Skip to main content
Log in

Ex-situ Genebanks—Seed Treasure Chambers for the Future

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript


The paper gives an overview about the past and present situation of the maintenance of plant genetic resources in ex-situ genebanks where seed storage is the prevailing way of conservation. Therefore, seed storability/longevity is of exceptional importance for germplasm conservation. Beside environmental influence on the trait a strong genetic component was proven. Genetic analyses performed at IPK Gatersleben on barley, wheat, oilseed rape and tobacco are summarized. It was demonstrated that seed response to ageing treatment appears to be significantly influenced by both genetic background and maternal environment. It was also shown that processes involved in the experimental ageing protocols (high temperature and humidity) only partly mirror those operating during long term genebank storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others


  1. Baur, E., Die Bedeutung der primitiven Kulturrassen und der wilden Verwandten unserer Kulturpflanzen für die Pflanzenzüchtung, Jb. Deut. Landw.-Ges., 1914, vol. 29, pp. 104—109.

    Google Scholar 

  2. Rodin, L.E., Reznik, S., Stapleton, P., and Löve, D., Five Continents by N. I. Vavilov, 2010.

  3. Stubbe, H., Geschichte des Instituts für Kulturpflanzenforschung Gatersleben der Deutschen Akademie der Wissenschaften zu Berlin (1943—1968), in Studien zur Geschichte der Akademie der Wissenschaften der DDR, 1982, vol. 10.

  4. Esakov, V.D., On the scientific relations of N.I. Vavilov to German geneticists and breeders, Die Kulturpflanze, 1988, vol. 36, pp. 61—69.

    Article  Google Scholar 

  5. Börner, A., Nickolai Ivanovich Vavilov and his footprint on plant genetic resources conservation in Germany, S.-kh.Biol., 2012, vol. 5, pp. 20—30.

    Google Scholar 

  6. Chen, H.F., Seedbanks: conserving the past for the future, Seed Sci. Technol., 1994, vol. 22, pp. 385—400.

    Google Scholar 

  7. Commission on Genetic Resources for Food and Agriculture, The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture, Rome: Food and Agriculture Organization of the United Nations, 2010.

  8. Food and Agriculture Organization of the United Nations, The State of the World’s Plant Genetic Resources for Food and Agriculture, Rome, 1998.

  9. Westengen, O.T., Jeppson, S., and Guarino, L., Global ex-situ crop diversity conservation and the svalbard global seed vault: assessing the current status, PLoS One, 2013, vol. 8, e64146.

    Article  CAS  Google Scholar 


  11. Food and Agriculture Organization of the United Nations, Genebank Standards for Plant Genetic Resources for Food and Agriculture, Rome, 2014, rev. ed.

  12. Milner, S.G., Jost, M., Taketa, S., et al., Genebank genomics highlights the diversity of a global barley collection, Nat. Genet., 2019, vol. 51, pp. 319—326. https://

    Book  Google Scholar 

  13. Nagel, M. and Börner, A., The longevity of crop seeds stored under ambient conditions, Seed Sci. Res., 2010, vol. 2, pp. 1—20.

    Article  Google Scholar 

  14. Nagel, M., Rehman-Arif, M.A., Rosenhauer, M., and Börner, A., Longevity of seeds—intraspecific differences in the Gatersleben genebank collections, in Tagungsband 60: Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, Gumpenstein, Österreich, 24—26 November 2009, 2010, pp. 179—181.

  15. Nagel, M., Vogel, H., Landjeva, S., et al., Seed conservation in ex situ genebanks—genetic studies on longevity in barley, Euphytica, 2009, vol. 170, pp. 5—14.

    Article  CAS  Google Scholar 

  16. Nagel, M., Kranner, I., Neumann, K., et al., Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background, developmental and environmental conditions in barley, Plant Cell Environ., 2015, vol. 38, pp. 1011—1022.

    Article  CAS  Google Scholar 

  17. Varshney, R.K., Paulo, M.J., Grando, S., et al., Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.), Field Crops Res., 2012, vol. 126, pp. 171—180.

    Article  Google Scholar 

  18. Landjeva, S., Lohwasser, U., and Börner, A., Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth, Euphytica, 2010, vol. 171, pp. 129—143.

    Article  Google Scholar 

  19. Pestsova, E.G., Börner, A. and Röder, M.S., Development and QTL assessment of Triticum aestivum—Aegilops tauschii introgression lines. Theor. Appl. Genet., 2006, vol. 112, pp. 634—647.

    Article  Google Scholar 

  20. Rehman Arif, M.A., Nagel, M., Neumann, K., et al., Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches, Euphytica, 2012, vol. 186, pp. 1—13.

    Article  Google Scholar 

  21. Börner, A., Schumann, E., Fürste, A., et al., Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.), Theor. Appl. Genet., 2002, vol. 105, pp. 921—936.

    Article  Google Scholar 

  22. Quarrie, S.A., Dodig, D., Pekic, S., et al., Prospects for marker-assisted selection of improved drought responses in wheat, Bulg. J. Plant Physiol., 2003, special issue, pp. 83—95.

  23. Neumann, K., Kobiljski, B., Dencic, S., et al., Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.), Mol. Breed., 2011, vol. 27, pp. 37—58.

    Article  Google Scholar 

  24. Rehman Arif, M.A., Nagel, M., Lohwasser, U., and Börner, A., Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.)., J. Biosci., 2017, vol. 42, pp. 81—89.

    Article  Google Scholar 

  25. Holzapfel, J., Voss, H.-H., Miedaner, T., et al., Inheritance of resistance to Fusarium head blight in three European winter wheat populations, Theor. Appl. Genet., 2008, vol. 117, pp. 1119—1128.

    Article  Google Scholar 

  26. Börner, A., Nagel, M., Agacka-Mołdoch, M., et al., QTL analysis of falling number and seed longevity in wheat (Triticum aestivum L.), J. Appl. Genet., 2018, vol. 59, pp. 35—42.

    Article  Google Scholar 

  27. Rehman Arif, M.A. and Börner, A., Mapping of QTL associated with seed longevity in durum wheat (Triticum durum Desf.), J. Appl. Genet., 2019, vol. 60, pp. 33—36.

    Article  Google Scholar 

  28. Nagel, M., Navakode, S., Scheibal, V., et al., The genetic basis of durum wheat germination and seedling growth under osmotic stress, Biol. Plant., 2014, vol. 58, pp. 681—688.

    Article  CAS  Google Scholar 

  29. Nagel, M., Rosenhauer, M., Willner, E., et al., Seed longevity in oilseed rape (Brassica napus L.)—genetic variation and QTL mapping, Plant Genet. Res.: Charact. Util., 2011, vol. 9, pp. 260—263.

    Article  CAS  Google Scholar 

  30. Badani, A.G., Snowdon, R.J., Baetzel, R., et al., Co-localisation of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus), Genome, 2006, vol. 49, pp. 1499—1509.

    Article  CAS  Google Scholar 

  31. Agacka-Modoch, M., Nagel, M., Doroszewska, T., et al., Mapping quantitative trait loci determining seed longevity in tobacco (Nicotiana tabacum L.), Euphytica, 2015, vol. 202 pp. 479—486.

    Article  Google Scholar 

  32. Xiao, B., Drake, K., Vontimitta, V., et al., Location of genomic regions contributing to Phytophthora nicotianae resistance in tobacco cultivar Florida 301, Crop Sci., 2013, vol. 53, pp. 473—481.

    Article  CAS  Google Scholar 

  33. Xue, Y., Zhang, S.Q., Yao, Q.H., et al., Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.), Euphytica, 2008, vol. 164, pp 739—744.

    Article  CAS  Google Scholar 

  34. Sasaki, K., Fukuta, Y., and Sato, T., Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage, Plant Breed., 2005, vol. 124, pp. 361—366.

    Article  Google Scholar 

  35. Zeng, D.L., Guo, L.B., Xu, Y.B., et al., QTL analysis of seed storability in rice, Plant Breed., 2006, vol. 125, pp. 57—60.

    Article  CAS  Google Scholar 

  36. Miura, K., Lyn, S.Y., Yano, M. and Nagamine, T., Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.), Theor. Appl. Genet., 2002, vol. 104, pp. 981—986.

    Article  CAS  Google Scholar 

  37. Li, G., Na, Y.W., Kwon, S.W., and Park, Y.J., Association analysis of seed longevity in rice under conventional and high-temperature germination conditions, Plant Syst. Evol., 2014, vol. 300, pp. 389—402.

    Article  CAS  Google Scholar 

  38. Stein, N., Prasad, M., Scholy, U., et al., A 1000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics, Theor. Appl. Genet., 2007, vol. 114, pp. 823—839.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to A. Börner or E. K. Khlestkina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Börner, A., Khlestkina, E.K. Ex-situ Genebanks—Seed Treasure Chambers for the Future. Russ J Genet 55, 1299–1305 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: