Skip to main content

Advertisement

Log in

Analysis of Spring Triticale Collection for Leaf Rust Resistance Genes with PCR Markers

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The results of PCR analysis of the collection of spring triticale accessions for the presence of genes Lr9, Lr12, Lr19, Lr24, Lr25, Lr28, Lr29, and Lr47 (conferring resistance to wheat leaf (brown) rust caused by Puccinia triticina Erikss.) with the use of molecular markers and isogenic lines carrying target genes (as a positive control) are presented in this article. The absence of positive PCR amplification of the DNA markers for the Lr9, Lr24, Lr28, Lr29, and Lr47 genes is observed in all the studied accessions of the spring triticale collection. The accessions Lena 1270, 25AD20, k-1763, k-3256, and Arta 59 are found to carry the Xgwm251 marker allele of the same size as that of isogenic Thatcher line with Lr25. PCR analysis using the LrAg marker shows that such triticale accessions as Pamyati Merezhko, Ulyana, V20-140, S17, PRAG 554/1, C95, 08871, RIL-130 R22-2, 172-1-16, C250, 08857, 09228, 131/17, A2-16-11, POPW9, PRAG 500, C260, Arta116/2, PRAG 554, AVS19883, k-1220, PRAG 553/1, C254, PRAG 518, PRAG 418, R-7-5 RIL202, L2413, and L8-6 carry a fragment close in size to that of the isogenic Thatcher line with Lr19 (used as positive control). Thus, we have shown that the gene pool of spring triticale is extremely depleted in leaf rust resistance genes. Active work is required on the introgression of new resistance genes both from the known donor lines of triticale and from bread wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. The Food and Agriculture Organization (FAO) of the United Nations. http://faostat.fao.org/.

  2. Mergoum, M., Singh, P.K., Peña, R.J., et al., Triticale: a “new” crop with old challenges, in Cereals, New York: Springer-Verlag, 2009, pp. 267—287. https://doi.org/10.1007/978-0-387-72297-9_9

    Google Scholar 

  3. Singh, R.P. and Saari, E.E., Biotic stresses in triticale, in Proceedings of the 2nd International Triticale Symposium, Mexico, 1990, pp. 171—177.

  4. Mikhailova, L.A., Merezhko, A.F., and Funtikova, E.Yu., Diversity of triticale for resistance to leaf rust, Dokl. Ros. Akad. S.-kh. Nauk, 2009, no. 5, pp. 27—29.

  5. Roelfs, A.P., Evidence for two populations of wheat stem and leaf rust in the USA, Plant Dis. Rep., 1974, vol. 32, pp. 806—809.

    Google Scholar 

  6. Singla, J., Luthi, L., Wicker, T., et al., Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat, Theor. Appl. Genet., 2017, vol. 130, pp. 1—12. https://doi.org/10.1007/s00122-016-2784-1

    Article  CAS  PubMed  Google Scholar 

  7. Kolmer, J.A., Leaf rust of wheat: pathogen biology, variation and host resistance. Review, Forests, 2013, vol. 4, pp. 70—84. https://doi.org/10.3390/f4010070

    Article  Google Scholar 

  8. Motorina, I.P., The genetic basis of resistance to brown rust forms of soft wheat from the remote crossings, Extended Abstract of Cand. Sci. Dissertation, Belgorod, 2006.

  9. Volkova, G.V., Scientifically based principles for the creation and use of wheat varieties resistant to harmful diseases to stabilize the agrocenoses’ phytosanitary in southern Russia. 2013, Nauchn. Zh. Kuban. Gos. Agron. Univ., 2013, no. 91(7), pp. 1—22.

  10. Sodkiewicz, W. and Strzembicka, A., Application of Triticum monococcum for the improvement of triticale resistance to leaf rust (Puccinia triticina), Plant Breed., 2004, vol. 123, pp. 39—42. https://doi.org/10.1046/j.1439-0523.2003.00949.x

    Article  Google Scholar 

  11. Kwiatek, M., Majka, M., Wiśniewska, H., et al., Effective transfer of chromosomes carrying leaf rust resistance genes from Aegilops tauschii Coss. into hexaploid triticale (×Triticosecale Witt.) using Ae. tauschii × Secale cereale amphiploid forms, J. Appl. Genet., 2015, vol. 56, no. 2, pp. 1—6. https://doi.org/10.1007/s13353-014-0264-3

    Article  Google Scholar 

  12. Tyryshkin, L.G., Kurbanova, P.M., Kurkiev, K.U., et al., Effective juvenile resistance of hexaploid triticale to brown rust, Zashch. Karantin Rast., 2008, no. 10, p. 25.

  13. Majka, M., Serfling, A., Czembor, P., et al., Resistance of (Aegilops tauschii × Secale cereale) × Triticosecale hybrids to leaf rust (Puccinia triticina) determined on the macroscopic and microscopic level, Front. Plant Sci., 2018, vol. 9. pp. 1–13.

  14. Hanzalová, A. and Bartoš, P., Resistance of triticale to wheat leaf rust (Puccinia triticina), Czech J. Genet. Plant Breed., 2011, vol. 47, no. 1, pp. 10—16. https://doi.org/10.17221/100/2010-cjgpb

    Article  Google Scholar 

  15. Sidorov, A.V., Tyryshkin, L.G., and Solov’ev, A.A., Juvenile resistance of modern bred triticale accessions to leaf rust, Vestn. Stud. Nauchn. O-va, 2014, no. 1, pp. 86—87.

  16. Davoyan, E.R., Bespalova, L.A., Davoyan, R.O., et al., Use of molecular markers in wheat breeding for resistance to leaf rust at the Lukyanenko Research Institute of Agriculture, Russ. J. Genet.: Appl. Res., 2015, vol. 5, no. 3, pp. 227—232. https://doi.org/10.1134/S2079059715030041

    Article  Google Scholar 

  17. Kurbanova, P.M., Genetic diversity of spring soft wheat for effective age related resistance to leaf rust, Extended Abstract of Cand. Sci. Dissertation, St. Petersburg, 2009.

  18. Zubov, D.E., Breeding value of donors of spring common wheat resistance to leaf rust in the Middle Volga region, Extended Abstract of Cand. Sci. Dissertation, Samar. Gos. S.-kh. Akad., Kinel’, 2011.

  19. Plotnikova, L.Ya. and Shtubei, T.Yu., Effectiveness of the wheat Lr22b, Lr34, and Lr37 genes for adult plant resistance to leaf rust in West Siberia and the cytophysiological basis of their action, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 1, pp. 47—53. https://doi.org/10.1134/S2079059713010115

    Article  Google Scholar 

  20. Sochalova, L.P. and Likhenko, I.E., Study of wheat resistance to leaf pathogens in Western Siberia, Sib. Vestn. S.-kh. Nauki, 2011, no. 1, pp. 18—25.

  21. Shamanin, V.P., Gul’tyaeva, E.I., Shaidayuk, E.L., et al., Virulence of the fungus Puccinia triticina on varieties and breeding lines of bread wheat on the experimental field of Omsk State Agrarian University in 2013, Vestn. Altai. Gos. Agrar. Univ., 2014, vol. 6, no. 116, pp. 36—42.

  22. Tyryshkin, L.G., Genetic control of effective juvenile resistance to leaf rust in collection samples of Triticum aestivum L., Russ. J. Genet., 2006, vol. 42, no. 3, pp. 294—300. https://doi.org/10.1134/S1022795406030094

    Article  CAS  Google Scholar 

  23. Driscoll, C.J. and Anderson, L.M., Cytogenetic studies of Transec—a wheat—rye translocation line, Can. J. Genet. Cytol., 1967, vol. 9, pp. 375—380. https://doi.org/10.1139/g67-038

    Article  Google Scholar 

  24. Murray, M.G. and Thompson, W.F., Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 1980, vol. 8, pp. 4321—4325. https://doi.org/10.1093/nar/8.19.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gupta, S.K., Charpe, A., Koul, S., et al., Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat, Genome, 2005, vol. 48, pp. 823—830. https://doi.org/10.1139/g05-051

    Article  CAS  PubMed  Google Scholar 

  26. Singh, S. and Bowden, R.L., Molecular mapping of adult-plant race-specific leaf rust resistance gene Lr12 in bread wheat, Mol. Breed., 2011, vol. 28, no. 2, pp. 137—142. https://doi.org/10.1007/s11032-010-9467-4

    Article  Google Scholar 

  27. Singh, A., Pallavi, J.K., Gupta, P., and Prabhu, K.V., Identification of microsatellite markers linked to leaf rust resistance gene Lr25 in wheat, J. Appl. Genet., 2012, vol. 53, pp. 19—25. https://doi.org/10.1007/s13353-011-0070-0

    Article  CAS  PubMed  Google Scholar 

  28. Gennaro, A., Koebner, R.M.B., and Ceoloni, C., A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat, Funct. Integr. Genomic, 2009, vol. 9, pp. 325—334. https://doi.org/10.1007/s10142-009-0115-1

    Article  CAS  Google Scholar 

  29. Gupta, S.K., Charpe, A., Koul, S., et al., Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat, Euphytica, 2006, vol. 150, nos. 1–2, pp. 233—240. https://doi.org/10.1007/s10681-006-9113-8

    Article  CAS  Google Scholar 

  30. Cherukuri, D.P., Gupta, S.K., Charpe, A., et al., Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat, Euphytica, 2005, vol. 143, pp. 19—26. https://doi.org/10.1007/s10681-005-1680-6

    Article  CAS  Google Scholar 

  31. Tar, M., Purnhauser, L., Csôsz, L., et al., Identification of molecular markers for an efficient leaf rust resistance gene (Lr29) in wheat, Acta Biol. Szegediensis, 2002, vol. 46, nos. 3–4, pp. 133—134.

    Google Scholar 

  32. Helguera, M., Khan, I.A., and Dubcovsky, J., Development of PCR markers for wheat leaf rust resistance gene Lr47, Theor. Appl. Genet., 2000, vol. 101, pp. 625—631. https://doi.org/10.1007/s001220051524

    Article  CAS  Google Scholar 

  33. Dakouri, A., McCallum, B.D., Walichnowski, A.Z., and Cloutier, S., Fine-mapping of the leaf rust Lr34 locus in Triticum aestivum L. and characterization of large germplasm collections support the ABC transporter as essential for gene function, Theor. Appl. Genet., 2010, vol. 121, pp. 373—384. https://doi.org/10.1007/s00122-010-1316-7

    Article  CAS  PubMed  Google Scholar 

  34. Singh, D., Park, R.F., and McIntosh, R.A., Genetic relationship between the adult plant resistance gene Lr12 and the complementary gene Lr31 for seedling resistance to leaf rust in common wheat, Plant Pathol., 1999, vol. 48(5), pp. 567—573. https://doi.org/10.1046/j.1365-3059.1999.00391.x

    Article  CAS  Google Scholar 

  35. Gruzdev, I.V., Zakharova, E.V., Bol’shakova, L.S., and Solov’ev, A.A., Evaluation of spring triticale samples (×Triticosecale Wittm.) for resistance to leaf rust (Puccinia triticina Erikss.) under field conditions of the Moscow Region, Izv. Timiryazevsk. S.-Kh. Akad., 2017, no. 3, pp. 5—18.

  36. Autrique, E., Singh, R., Tanksley, S.D., and Sorrells, M.E., Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives, Genome, 1995, vol. 38, pp. 75—83. https://doi.org/10.1139/g95-009

    Article  CAS  PubMed  Google Scholar 

  37. Hussein, T., Bowden, R.L., Gill, B.S., and Cox, T.S., Chromosome location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat, Crop Sci., 1997, vol. 37, no. 6, pp. 1764—1766. https://doi.org/10.2135/cropsci1997.0011183x003700060016x

    Article  Google Scholar 

  38. Nelson, J.C., Singh, R.P., Autrique, J.E., and Sorrells, M.E., Mapping genes conferring and suppressing leaf rust resistance in wheat, Crop Sci., 1997, vol. 37, pp. 1928—1935. https://doi.org/10.2135/cropsci1997.0011183x003700060043x

    Article  CAS  Google Scholar 

  39. Raupp, W.J., Sukhwinder-Singh, G.L., Brown-Guedira, G.L., and Gill, B.S., Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat, Theor. Appl. Genet., 2001, vol. 102, pp. 347—352. https://doi.org/10.1007/s001220051652

    Article  CAS  Google Scholar 

  40. Wehling, P., Linz, A., Hackauf, B., et al., Leaf-rust resistance in rye (Secale cereale L.): 1. Genetic analysis and mapping of resistance genes Pr1 and Pr2, Theor. Appl. Genet., 2003, vol. 107, pp. 432—438. https://doi.org/10.1007/s00122-003-1263-7

    Article  CAS  PubMed  Google Scholar 

  41. Roux, S.R., Hackauf, B., Linz, A., et al., Leaf-rust resistance in rye (Secale cereale L.): 2. Genetic analysis and mapping of resistance genes Pr3, Pr4 and Pr 5, Theor. Appl. Genet., 2004, vol. 110, pp. 192—201. https://doi.org/10.1007/s00122-004-1807-5

    Article  CAS  PubMed  Google Scholar 

  42. State Register of Selection Achievements Allowed for Use. http://reestr.gossort.com/reestr/culture/10. Accessed February 20, 2018

Download references

ACKNOWLEDGMENTS

We are grateful to the reviewer whose valuable and fair comments, in our opinion, allowed us to significantly improve the quality of the article.

Funding

The studies were supported by the Russian Science Foundation, grant no. 16-16-00097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Kroupin.

Ethics declarations

Statement of the welfare of animals. This article does not contain any studies with animals as objects of research.

Statement of the welfare of human participants. This article does not contain any studies involving human participants as scientific objects.

Conflicts of interest. The authors declare no conflict of interest.

Additional information

Translated by M. Romanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroupin, P.Y., Gruzdev, I.V., Divashuk, M.G. et al. Analysis of Spring Triticale Collection for Leaf Rust Resistance Genes with PCR Markers. Russ J Genet 55, 945–954 (2019). https://doi.org/10.1134/S1022795419080088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419080088

Keywords: