Skip to main content

Advertisement

Log in

Association of Polymorphic Variants of Key Histamine Metabolism Genes and Histamine Receptor Genes with Multifactorial Diseases

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Histamine is a biologically active substance of local effect, but is involved in the regulation of different processes in the body, including the pathogenesis of diseases. In the present review, molecular genetic, clinical, and experimental studies on the role of histamine and key genes of its metabolism in the pathogenesis of diseases are summarized. Data on associated polymorphic variants (30 SNPs, 1 CNV) of key histamine metabolism genes with multifactorial diseases are given, including HDC (involved in the synthesis of histamine), HNMT, AOC1, MAOB, ALDH7A1 (involved in the processes of histamine degradation), and HRH1, HRH2, HRH3, HRH4 (histamine receptors): associations were established with allergic and oncological diseases, diseases of nervous and cardiovascular systems, gastrointestinal tract, metabolic disorders, etc. A nonrandomness of established associations of histamine metabolic pathway genes with pathological conditions is supported by clinical observations and experimental studies performed on model objects and cell lines. Moreover, according to clinical and experimental data, a wider range of pathological conditions in which risk structural and functional peculiarities of key histamine metabolic pathway genes will make a certain contribution can be expected. The questions of the complexity of determining the significance of histamine level and structural and functional peculiarities of histamine metabolic pathway genes in terms of a positive/negative effect on the body, as well as some possible reasons for inconsistency of association studies performed in different ethnoterritorial groups, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Maintz, L. and Novak, N., Histamine and histamine intolerance, Am. J. Clin. Nutr., 2007, vol. 85, pp. 1185—1196. https://doi.org/10.1093/ajcn/85.5.1185

    Article  CAS  PubMed  Google Scholar 

  2. Wang, K.Y., Tanimoto, A., Yamada, S., et al., Histamine regulation in glucose and lipid metabolism via histamine receptors: model for nonalcoholic steatohepatitis in mice, Am. J. Pathol., 2010, vol. 177, no. 2, pp. 713—723. https://doi.org/10.2353/ajpath.2010.091198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smuda, C. and Bryce, P.J., New developments in the use of histamine and histamine receptors, Curr. Allergy Asthma Rep., 2011, vol. 11, no. 2, pp. 94—100. https://doi.org/10.1007/s11882-010-0163-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohtsu, H., Pathophysiologic role of histamine: evidence clarified by histidine decarboxylasegene knockout mice, Int. Arch. Allergy Immunol., 2012, vol. 158, suppl. 1, pp. 2—6. https://doi.org/10.1159/000337735

    Article  CAS  PubMed  Google Scholar 

  5. Hoffmann, K.M., Gruber, E., Deutschmann, A., et al., Histamine intolerance in children with chronic abdominal pain, Arch. Dis. Child., 2013, vol. 98, no. 10, pp. 832—833. https://doi.org/10.1136/archdischild-2013-305024

    Article  PubMed  Google Scholar 

  6. Willer, C.J., Schmidt, E.M., Sengupta, S., et al., Discovery and refinement of loci associated with lipid levels, Nat. Genet., 2013, vol. 45, no. 11, pp. 1274—1283. https://doi.org/10.1038/ng.2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hattori, M., Yamazaki, M., Ohashi, W., et al., Critical role of endogenous histamine in promoting end-organ tissue injury in sepsis, Intensive Care Med. Exp., 2016, vol. 4, no. 1: 36. https://doi.org/10.1186/s40635-016-0109-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yamada, S., Guo, X., Wang, K.Y., et al., Novel function of histamine signaling via histamine receptors in cholesterol and bile acid metabolism: histamine H2 receptor protects against nonalcoholic fatty liver disease, Pathol. Int., 2016, vol. 66, no. 7, pp. 376—385. https://doi.org/10.1111/pin.12423

    Article  CAS  PubMed  Google Scholar 

  9. Wechsler, J.B., Szabo, A., Hsu, C., et al., Histamine drives severity of innate inflammation via histamine 4 receptor in murine experimental colitis, Mucosal Immunol., 2018, vol. 11, no. 3, pp. 861—870. https://doi.org/10.1038/mi.2017.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. UniProt. http://www.uniprot.org/. Accessed October, 2018.

  11. The Human Protein Atlas. https://www.proteinatlas.org/. Accessed October, 2018.

  12. Uhlén, M., Fagerberg, L., Hallström, B.M., et al., Proteomics: tissue-based map of the human proteome, Science, 2015, vol. 347, no. 6220:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  13. Zocco, D., McMorrow, J.P., and Murphy, E.P., Histamine modulation of peripheral CRH receptor type 1alpha expression is dependent on Ca(2+) signalling and NF-kappaB/p65 transcriptional activity, Mol. Immunol., 2010, vol. 47, nos. 7—8, pp. 1426—1437. https://doi.org/10.1016/j.molimm.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  14. Zeng, Z., Shen, L., Li, X., et al., Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis, Clin. Sci. (London), 2014, vol. 127, no. 7, pp. 435—448. https://doi.org/10.1042/CS20130716

    Article  CAS  Google Scholar 

  15. Emirbayer, P.E., Sinha, A., Ignatchenko, V., et al., Proteomic response of human umbilical vein endothelial cells to histamine stimulation, Proteomics, 2017, vol. 17, no. 21. https://doi.org/10.1002/pmic.201700116

  16. Luttrell, M.J. and Halliwill, J.R., The intriguing role of histamine in exercise responses, Exercise Sport Sci. Rev., 2017, vol. 45, no. 1, pp. 16—23. https://doi.org/10.1249/JES.0000000000000093

    Article  Google Scholar 

  17. National Center for Biotechnology Information (NCBI). http://www.ncbi.nlm.nih.gov/. Accessed October, 2018

  18. Ensemble genome browser 88. http://www.ensembl.org/. Accessed October, 2018.

  19. Kucher, A.N. and Cherevko, N.A., Genes of the histamine pathway and common diseases, Russ. J. Genet., 2018, vol. 54, no. 1, pp. 12—26. https://doi.org/10.7868/S0016675818010083

    Article  CAS  Google Scholar 

  20. Kucher, A.N. and Babushkina, N.P., Genes of histamine metabolic pathway and the diseases: comorbidity and clinical heterogeneity, in Molekulyarno-biologicheskie tekhnologii v meditsinskoi praktike (Molecular Biological Technologies in Medical Practice), Maslennikov, A.B., Ed., Novosibirsk: Akademizdat, 2017, issue 26, pp. 66—89.

  21. Tuleta, I., Skowasch, D., Aurich, F., et al., Asthma is associated with atherosclerotic artery changes, PLoS One, 2017, vol. 12, no. 10. e0186820. https://doi.org/10.1371/journal.pone.0186820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matheson, E.M., Player, M.S., Mainous, A.G. III, et al., The association between hay fever and stroke in a cohort of middle aged and elderly adults, J. Am. Board Fam. Med., 2008, vol. 21, no. 3, pp. 179—183. https://doi.org/10.3122/jabfm.2008.03.070273

    Article  PubMed  Google Scholar 

  23. Yan, L., Galinsky, R.E., Bernstein, J.A., et al., Histamine N-methyltransferase pharmacogenetics: association of a common functional polymorphism with asthma, Pharmacogenetics, 2000, vol. 10, no. 3, pp. 261—266.

    Article  CAS  PubMed  Google Scholar 

  24. García-Martin, E., Mendoza, J.L., Martínez, C., et al., Severity of ulcerative colitis is associated with a polymorphism at diamine oxidase gene but not at histamine N-methyltransferase gene, World J. Gastroenterol., 2006, vol. 12, no. 4, pp. 615—620.

    Article  PubMed  PubMed Central  Google Scholar 

  25. García-Martín, E., Martínez, C., Serrador, M., et al., Diamine oxidase rs10156191 and rs2052129 variants are associated with the risk for migraine, Headache, 2015, vol. 55, no. 2, pp. 276—286. https://doi.org/10.1111/head.12493

    Article  PubMed  Google Scholar 

  26. Kim, S.H., Kang, Y.M., Kim, S.H., et al., Histamine N-methyltransferase 939A>G polymorphism affects mRNA stability in patients with acetylsalicylic acid-intolerant chronic urticarial, Allergy, 2009, vol. 64, no. 2, pp. 213—221. https://doi.org/10.1111/j.1398-9995.2008.01795.x

    Article  CAS  PubMed  Google Scholar 

  27. Gervasini, G., Agundez, J.A.G., Garcıa-Menaya, J., et al., Variability of the L-histidine decarboxylase gene in allergic rhinitis, Allergy, 2010, vol. 65, pp. 1576—1584. https://doi.org/10.1111/j.1398-9995.2010.02425.x

    Article  CAS  PubMed  Google Scholar 

  28. Guo, Y., Tan, L.-J., Lei, S.-F., et al., Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis, PLoS Genet., 2010, vol. 6, no. 1. e1000806. https://doi.org/10.1371/journal.pgen.1000806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stevenson, J., Sonuga-Barke, E., McCann, D., et al., The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children’s ADHD symptoms, Am. J. Psychiatry, 2010, vol. 167, no. 9, pp. 1108—1115. https://doi.org/10.1176/appi.ajp.2010.09101529

    Article  PubMed  Google Scholar 

  30. Szczepankiewicz, A., Bręborowicz, A., Sobkowiak, P., and Popiel, A., Polymorphisms of two histamine-metabolizing enzymes genes and childhood allergic asthma: a case control study, Clin. Mol. Allergy, 2010, vol. 8:14. https://doi.org/10.1186/1476-7961-8-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, B., Shao, Y., Li, P., et al., Copy number variations of the human histamine H4 receptor gene are associated with systemic lupus erythematosus, Br. J. Dermatol., 2010, vol. 163, no. 5, pp. 935—940. https://doi.org/10.1111/j.1365-2133.2010.09928.x

    Article  CAS  PubMed  Google Scholar 

  32. Vehof, J., Risselada, A.J., Al Hadithy, A.F., et al., Association of genetic variants of the histamine H1 and muscarinic M3 receptors with BMI and HbA1c values in patients on antipsychotic medication, Psychopharmacology (Berlin), 2011, vol. 216, no. 2, pp. 257—265. https://doi.org/10.1007/s00213-011-2211-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agundez, J.A.G., Ayuso, P., Cornejo-Garcıa, J.A., et al., The diamine oxidase gene is associated with hypersensitivity response to non-steroidal anti-inflammatory drugs, PLoS One, 2012, vol. 7, no. 11. e47571. https://doi.org/10.1371/journal.pone.0047571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, H.S., Kim, S.H., Kim, K.W., et al., Involvement of human histamine N-methyltransferase gene polymorphisms in susceptibility to atopic dermatitis in Korean children, Allergy Asthma Immunol. Res., 2012, vol. 4, no. 1, pp. 31—36. https://doi.org/10.4168/aair.2012.4.1.31

    Article  CAS  PubMed  Google Scholar 

  35. Millán-Guerrero, R.O., Baltazar-Rodríguez, L.M., Cárdenas-Rojas, M.I., et al., A280V polymorphism in the histamine H3 receptor as a risk factor for migraine, Arch. Med. Res., 2011, vol. 42, no. 1, pp. 44—47. https://doi.org/10.1016/j.arcmed.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  36. Sachidanandam, K., Gayle, A.A., Robins, H.I., and Kolesar, J.M., Unexpected doxorubicin-mediated cardiotoxicity in sisters: possible role of polymorphisms in histamine n-methyl transferase, J. Oncol. Pharm. Pract., 2013, vol. 19, no. 3, pp. 269—272. https://doi.org/10.1177/1078155212461022

    Article  CAS  PubMed  Google Scholar 

  37. Wei, Z., Wang, L., Yu, T., et al., Histamine H4 receptor polymorphism: a potential predictor of risperidone efficacy, J. Clin. Psychopharmacol., 2013, vol. 33, no. 2, pp. 221—225. https://doi.org/10.1097/JCP.0b013e318283963b

    Article  CAS  PubMed  Google Scholar 

  38. Chen, B., Ye, T., and Shao, Y., Association between copy-number variations of the human histamine H4 receptor gene and atopic dermatitis in a Chinese population, Clin. Exp. Dermatol., 2013, vol. 38, no. 3, pp. 295—300. https://doi.org/10.1111/ced.12117

    Article  CAS  PubMed  Google Scholar 

  39. Wang, H., Tong, L., Wei, J., et al., The ALDH7A1 genetic polymorphisms contribute to development of esophageal squamous cell carcinoma, Tumour Biol., 2014, vol. 35, no. 12, pp. 12665—12670. https://doi.org/10.1007/s13277-014-2590-9

    Article  CAS  PubMed  Google Scholar 

  40. Anvari, S., Vyhlidal, C.A., Dai, H., and Jones, B.L., Genetic variation along the histamine pathway in children with allergic versus nonallergic asthma, Am. J. Respir. Cell. Mol. Biol., 2015, vol. 53, no. 6, pp. 802—809. https://doi.org/10.1165/rcmb.2014-0493OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amo, G., Cornejo-García, J.A., García-Menaya, J.M., et al., FCERI and histamine metabolism gene variability in selective responders to NSAIDS, Front Pharmacol., 2016, vol. 7, no. 353. https://doi.org/10.3389/fphar.2016.00353

  42. Zhang, Y., Piao, X., Wu, J., et al., A meta-analysis on relationship of MAOB intron 13 polymorphisms, interactions with smoking/COMT H158L polymorphisms with the risk of PD, Int. J. Neurosci., 2016, vol. 126, no. 5, pp. 400—407. https://doi.org/10.3109/00207454.2015.1028057

    Article  CAS  PubMed  Google Scholar 

  43. Löhle, M., Mangone, G., Wolz, M., et al., Functional monoamine oxidase B gene intron 13 polymorphism predicts putaminal dopamine turnover in de novo Parkinson’s disease, Mov. Disord., 2018, vol. 33, no. 9, pp. 1496—1501. https://doi.org/10.1002/mds.27466

    Article  CAS  PubMed  Google Scholar 

  44. He, G.H., Lu, J., Shi, P.P., et al., Polymorphisms of human histamine receptor H4 gene are associated with breast cancer in Chinese Han population, Gene, 2013, vol. 519, no. 2, pp. 260—265. https://doi.org/10.1016/j.gene.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  45. He, G.H., Lin, J.J., Cai, W.K., et al., Associations of polymorphisms in histidine decarboxylase, histamine N-methyltransferase and histamine receptor H3 genes with breast cancer, PLoS One, 2014, vol. 9, no. 5. e97728. https://doi.org/10.1371/journal.pone.0097728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He, G.H., Cai, W.K., Meng, J.R., et al., Relation of polymorphism of the histidine decarboxylase gene to chronic heart failure in Han Chinese, Am. J. Cardiol., 2015, vol. 115, no. 11, pp. 1555—1562. https://doi.org/10.1016/j.amjcard.2015.02.062

    Article  CAS  PubMed  Google Scholar 

  47. He, G.H., Cai, W.K., Zhang, J.B., et al., Associations of polymorphisms in HRH2, HRH3, DAO, and HNMT genes with risk of chronic heart failure, Biomed. Res. Int., 2016, vol. 2016: 1208476. https://doi.org/10.1155/2016/1208476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Raje, N., Vyhlidal, C.A., Dai, H., and Jones, B.L., Genetic variation within the histamine pathway among patients with asthma, Asthma, 2015, vol. 52, no. 4, pp. 353—362. https://doi.org/10.3109/02770903.2014.973501

    Article  CAS  Google Scholar 

  49. Tiwari, A.K., Zhang, D., Pouget, J.G., et al., Impact of histamine receptors H1 and H3 polymorphisms on antipsychotic-induced weight gain, World J. Biol. Psychiatry, 2016, Dec. 15, pp. 1—9. https://doi.org/10.1080/15622975.2016.1262061

  50. Mommert, S., Ratz, L., Herwig, K., et al., Genetic variations within the promotor region of the human histamine H4 receptor gene in psoriasis patients, Pharmacol. Res., 2016, vol. 114, pp. 121—127. https://doi.org/10.1016/j.phrs.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  51. Meza-Velázquez, R., López-Márquez, F., Espinosa-Padilla, S., et al., Association between two polymorphisms of histamine-metabolising enzymes and the severity of allergic rhinitis in a group of Mexican children, Allergol. Immunopathol. (Madrid), 2016, vol. 44, no. 5, pp. 433—438. https://doi.org/10.1016/j.aller.2016.01.002

    Article  Google Scholar 

  52. Meza-Velázquez, R., López-Márquez, F., Espinosa-Padilla, S., et al., Asociación de polimorfismos de diaminoxidasa e histamina N metiltransferasa con la presencia, discapacidad y severidad de migrana en un grupo de madres mexicanas de ninos alérgicos, Neurología, 2017, vol. 32, no. 8, pp. 500—507. https://doi.org/10.1016/j.nrl.2016.02.025

    Article  PubMed  Google Scholar 

  53. Leary, P.J., Kronmal, R.A., Bluemke, D.A., et al., Histamine H2 receptor polymorphisms, myocardial transcripts, and heart failure (from the multi-ethnic study of atherosclerosis and beta-blocker effect on remodeling and gene expression trial), Am. J. Cardiol., 2018, vol. 121, no. 2, pp. 256—261. https://doi.org/10.1016/j.amjcard.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  54. Sampaio, T.F., Dos Santos, E.U.D., de Lima, G.D.C., et al., MAO-B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson’s disease, J. Clin. Pharmacol., 2018, vol. 58, no. 7, pp. 920—926. https://doi.org/10.1002/jcph.1096

    Article  CAS  PubMed  Google Scholar 

  55. Jiménez-Jiménez, F.J., Alonso-Navarro, H., García-Martín, E., Agúndez, J.A., Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease: a PRISMA-compliant systematic review and meta-analysis, Medicine (Baltimore), 2016, vol. 95, no. 27. e4147. https://doi.org/10.1097/MD.0000000000004147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Preuss, C.V., Wood, T.C., Szumlanski, C.L., et al., Human histamine N-methyltransferase pharmacogenetics: common genetic polymorphisms that alter activity, Mol. Pharmacol., 1998, vol. 53, no. 4, pp. 708—717.

    Article  CAS  PubMed  Google Scholar 

  57. Jansson, M., McCarthy, S., Sullivan, P.F., et al., MAOA haplotypes associated with thrombocyte-MAO activity, BMC Genet., 2005, vol. 6: 46. https://doi.org/10.1186/1471-2156-6-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maintz, L., Yu, C.F., Rodríguez, E., et al., Association of single nucleotide polymorphisms in the diamine oxidase gene with diamine oxidase serum activities, Allergy, 2011, vol. 66, no. 7, pp. 893—902. https://doi.org/10.1111/j.1398-9995.2011.02548.x

    Article  CAS  PubMed  Google Scholar 

  59. Cai, W.K., Zhang, J.B., Chen, J.H., et al., The HRH4 rs11662595 mutation is associated with histamine H4 receptor dysfunction and with increased epithelial-to-mesenchymal transition progress in non-small cell lung cancer, Biochim. Biophys. Acta Mol. Basis Dis., 2017, vol. 1863, no. 11, pp. 2954—2963. https://doi.org/10.1016/j.bbadis.2017.08.018

    Article  CAS  PubMed  Google Scholar 

  60. Liu, K., Tan, L.J., Wang, P., et al., Functional relevance for associations between osteoporosis and genetic variants, PLoS One, 2017, vol. 12, no. 4. e0174808. https://doi.org/10.1371/journal.pone.0174808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheng, C.M., Wu, Y.H., Tsai, S.J., et al., Risk of developing Parkinson’s disease among patients with asthma: a nationwide longitudinal study, Allergy, 2015, vol. 70, no. 12, pp. 1605—1612. https://doi.org/10.1111/all.12758

    Article  PubMed  Google Scholar 

  62. Zaitsev, V.G. and Zheltova, A.A., Histamine intolerance and diamino oxidase activity: problems of virtual screening, Ross. Immunol. Zh., 2016, vol. 10, no. 19, no. 2(1), pp. 553—554.

  63. Keller, G.A. and Di Girolamo, G., Antihistamines: past answers and present questions, Curr. Drug Saf., 2010, vol. 5, no. 1, pp. 58—64.

    Article  CAS  PubMed  Google Scholar 

  64. Ramsay, R.R. and Albreht, A., Kinetics, mechanism, and inhibition of monoamine oxidase, J. Neural. Transm. (Vienna), 2018, vol. 125, no. 11, pp. 1659—1683. https://doi.org/10.1007/s00702-018-1861-9

    Article  CAS  PubMed  Google Scholar 

  65. Torkaman-Boutorabi, A., Shahidi, G.A., Choopani, S., et al., The catechol-O-methyltransferase and monoamine oxidase B polymorphisms and levodopa therapy in the Iranian patients with sporadic Parkinson’s disease, Acta Neurobiol. Exp. (Wars.), 2012, vol. 72, pp. 272—282.

    Google Scholar 

  66. Cai, W.K., Zhang, J.B., Wang, N.M., et al., Lack of association between rs2067474 polymorphism in histamine receptor H2 gene and breast cancer in Chinese Han population, Sci. World J., 2015, vol. 2015: 545292. https://doi.org/10.1155/2015/545292

    Article  CAS  Google Scholar 

  67. Jiménez-Jiménez, F.J., García-Martín, E., Alonso-Navarro, H., et al., Thr105Ile (rs11558538) polymorphism in the histamine-1-methyl-transferase (HNMT) gene and risk for restless legs syndrome, J. Neural. Transm. (Vienna), 2017, vol. 124, no. 3, pp. 285—291. https://doi.org/10.1007/s00702-016-1645-z

    Article  CAS  PubMed  Google Scholar 

  68. Hailong, C., Mei, Q., Zhang, L., and Xu, J., C314T polymorphism in histamine N-methyltransferase gene and susceptibility to duodenal ulcer in Chinese population, Clin. Chim. Acta., 2008, vol. 389, nos. 1—2, pp. 51—54. https://doi.org/10.1016/j.cca.2007.11.022

    Article  CAS  PubMed  Google Scholar 

  69. López Palacios, N., Agúndez, J.A., Mendoza, J.L., et al., Analysis of a non-synonymous single nucleotide polymorphism of the human diamine oxidase gene (ref. SNP ID: rs1049793) in patients with Crohn’s disease, Scand. J. Gastroenterol., 2009, vol. 44, no. 10, pp. 1207—1212. https://doi.org/10.1080/00365520903171250

    Article  CAS  PubMed  Google Scholar 

  70. Online Mendelian Inheritance in Man. http://omim.org/. Accessed October, 2018.

  71. Sander, L.E., Lorentz, A., Sellge, G., et al., Selective expression of histamine receptors H1R, H2R, and H4R, but not H3R, in the human intestinal tract, Gut, 2006, vol. 55, no. 4, pp. 498—504. https://doi.org/10.1136/gut.2004.061762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Orazov, M.R., Radzinskii, V.E., Khamoshina, M.B., et al., Disruption of histamine metabolism in the pathogenesis of chronic pelvic pain in patients with external genital endometriosis, Patol. Fiziol. Eksp. Ter., 2017, vol. 61, no. 2, pp. 56—60.

    CAS  PubMed  Google Scholar 

  73. Chrusch, C., Sharma, S., Unruh, H., et al., Histamine H3 receptor blockade improves cardiac function in canine anaphylaxis, Am. J. Respir. Crit. Care Med., 1999, vol. 160, no. 4, pp. 1142—1149.

    Article  CAS  PubMed  Google Scholar 

  74. Yoshimatsu, H., Chiba, S., Tajima, D., et al., Histidine suppresses food intake through its conversion into neuronal histamine, Exp. Biol. Med. (Maywood), 2002, vol. 227, no. 1, pp. 63—68.

    Article  CAS  Google Scholar 

  75. Fülöp, A.K., Földes, A., Buzás, E., et al., Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice with a targeted disruption of the histidine decarboxylase gene, Endocrinology, 2003, vol. 144, no. 10, pp. 4306—4314. https://doi.org/10.1210/en.2003-0222

    Article  CAS  PubMed  Google Scholar 

  76. Erdogan, O., Altun, A., Gazi, S., and Ozbay, G., Loratidine improves ischemic parameters of exercise stress test in patients with acute myocardial infarction, Am. Heart J., 2004, vol. 148, no. 6. e24. https://doi.org/10.1016/j.ahj.2004.04.048

    Article  CAS  PubMed  Google Scholar 

  77. Kim, J., Ogai, A., Nakatani, S., et al., Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies, J. Am. Coll. Cardiol., 2006, vol. 48, no. 7, pp. 1378—1384. https://doi.org/10.1016/j.jacc.2006.05.069

    Article  CAS  PubMed  Google Scholar 

  78. Maintz, L., Benfadal, S., Allam, J.P., et al., Evidence for a reduced histamine degradation capacity in a subgroup of patients with atopic eczema, J. Allergy Clin. Immunol., 2006, vol. 117, no. 5, pp. 1106—1112. https://doi.org/10.1016/j.jaci.2005.11.041

    Article  CAS  PubMed  Google Scholar 

  79. Luo, T., Chen, B., Zhao, Z., et al., Histamine H2 receptor activation exacerbates myocardial ischemia/reperfusion injury by disturbing mitochondrial and endothelial function, Basic Res. Cardiol., 2013, vol. 108, no. 3:342. https://doi.org/10.1007/s00395-013-0342-4

    Article  CAS  PubMed  Google Scholar 

  80. Szabó, P.M., Wiener, Z., Tömböl, Z., et al., Differences in the expression of histamine-related genes and proteins in normal human adrenal cortex and adrenocortical tumors, Virchows Arch., 2009, vol. 455, no. 2, pp. 133—142. https://doi.org/10.1007/s00428-009-0807-x

    Article  CAS  PubMed  Google Scholar 

  81. Breunig, E., Michel, K., Zeller, F., et al., Histamine excites neurons in the human submucous plexus through activation of H1, H2, H3 and H4 receptors, J. Physiol., 2007, vol. 583, part 2, pp. 73—742.

    Article  CAS  Google Scholar 

  82. Rozenberg, I., Sluka, S.H., Rohrer, L., et al., Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for low-density lipoproteins, Arterioscler. Thromb. Vasc. Biol., 2010, vol. 30, no. 5, pp. 923—930. https://doi.org/10.1161/ATVBAHA.109.201079

    Article  CAS  PubMed  Google Scholar 

  83. Yang, J.J., Ma, Y.L., Zhang, P., et al., Histidine decarboxylase is identified as a potential biomarker of intestinal mucosal injury in patients with acute intestinal obstruction, Mol. Med., 2011, vol. 17, nos. 11—12, pp. 1323—1337. https://doi.org/10.2119/molmed.2011.00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, X.D., Ai, W., Asfaha, S., et al., Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells, Nat. Med., 2011, vol. 17, no. 1, pp. 87—95. https://doi.org/10.1038/nm.2278

    Article  CAS  PubMed  Google Scholar 

  85. Mušič, E., Korošec, P., Šilar, M., et al., Serum diamine oxidase activity as a diagnostic test for histamine intolerance, Wien. Klin. Wochenschr., 2013, vol. 125, nos. 9—10, pp. 239—243. https://doi.org/10.1007/s00508-013-0354-y

    Article  CAS  PubMed  Google Scholar 

  86. Panja, S.K., Bhattacharya, B., and Lahiri, S.C., Role of histamine as a toxic mediator in the pathogenesis of vitiligo, Indian J. Dermatol., 2013, vol. 58, no. 6, pp. 421—428. https://doi.org/10.4103/0019-5154.119947

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen, S.M., Mu, D., Cui, M., et al., Relationship between serum histamine levels and ST-segment resolution in patients with acute myocardial infarction treated with primary percutaneous coronary intervention, Beijing Da Xue Xue Bao Yi Xue Ban, 2014, vol. 46, no. 6, pp. 875—878.

    CAS  PubMed  Google Scholar 

  88. Chen, C. and Khismatullin, D.B., Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells, PLoS One, 2015, vol. 10, no. 3. e0123088. https://doi.org/10.1371/journal.pone.0123088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Deng, L., Hong, T., Lin, J., et al., Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis, Sci. Rep., 2015, vol. 5:13131. https://doi.org/10.1038/srep13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Potnuri, A.G., Allakonda, L., Appavoo, A., et al., Targeting histamine-2 receptor for prevention of cardiac remodelling in chronic pressure overload, Int. J. Cardiol., 2016, vol. 202, pp. 831—833. https://doi.org/10.1016/j.ijcard.2015.10.040

    Article  PubMed  Google Scholar 

  91. Yamada, S., Wang, K.Y., Tanimoto, A., and Sasaguri, Y., Novel function of histamine signaling in hyperlipidemia-induced atherosclerosis: histamine H1 receptors protect and H2 receptors accelerate atherosclerosis, Pathol. Int., 2015, vol. 65, no. 2, pp. 67—80. https://doi.org/10.1111/pin.12246

    Article  CAS  PubMed  Google Scholar 

  92. Schirmer, B., Rezniczek, T., Seifert, R., and Neumann, D., Proinflammatory role of the histamine H4 receptor in dextrane sodium sulfate-induced acute colitis, Biochem. Pharmacol., 2015, vol. 98, no. 1, pp. 102—109. https://doi.org/10.1016/j.bcp.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  93. Manzotti, G., Breda, D., Di Gioacchino, M., and Burastero, S.E., Serum diamine oxidase activity in patients with histamine intolerance, Int. J. Immunopathol. Pharmacol., 2016, vol. 29, no. 1, pp. 105—111. https://doi.org/10.1177/0394632015617170

    Article  CAS  PubMed  Google Scholar 

  94. Leary, P.J., Tedford, R.J., Bluemke, D.A., et al., Histamine H2 receptor antagonists, left ventricular morphology, and heart failure risk: the MESA study, J. Am. Coll. Cardiol., 2016, vol. 67, no. 13, pp. 1544—1552. https://doi.org/10.1016/j.jacc.2016.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He, M., Zhang, Q., Deng, C., et al., Time-dependent effects of olanzapine treatment on the expression of histidine decarboxylase, H1 and H3 receptor in the rat brain: the roles in olanzapine-induced obesity, Psychoneuroendocrinology, 2017, vol. 85, pp. 190—199. https://doi.org/10.1016/j.psyneuen.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  96. Chen, J., Hong, T., and Ding, S., Aggravated myocardial infarction-induced cardiac remodeling and heart failure in histamine-deficient mice, Sci. Rep., 2017, vol. 7:44007. https://doi.org/10.1038/srep44007

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ferstl, R., Frei, R., Barcik, W., et al., Histamine receptor 2 modifies iNKT cell activity within the inflamed lung, Allergy, 2017, vol. 72, no. 12, pp. 1925—1935. https://doi.org/10.1111/all.13227

    Article  CAS  PubMed  Google Scholar 

  98. Maciag, A., Farkowski, M.M., Chwyczko, T., et al., Efficacy and safety of antazoline in the rapid cardioversion of paroxysmal atrial fibrillation (the AnPAF Study), Europace, 2017, vol. 19, pp. 1637—1642. https://doi.org/10.1093/europace/euw384

    Article  PubMed  Google Scholar 

  99. Massari, N.A., Nicoud, M.B., Sambuco, L., et al., Histamine therapeutic efficacy in metastatic melanoma: role of histamine H4 receptor agonists and opportunity for combination with radiation, Oncotarget, 2017, vol. 8, no. 16, pp. 26471—26491. https://doi.org/10.18632/oncotarget.15594

    Article  PubMed  PubMed Central  Google Scholar 

  100. Salem, A., Almahmoudi, R., Listyarifah, D., et al., Histamine H4 receptor signalling in tongue cancer and its potential role in oral carcinogenesis—a short report, Cell Oncol. (Dordrecht), 2017, vol. 40, no. 6, pp. 621—630. https://doi.org/10.1007/s13402-017-0336-6

    Article  CAS  Google Scholar 

  101. Wunschel, E.J., Schirmer, B., Seifert, R., and Neumann, D., Lack of histamine H4-receptor expression aggravates TNBS-induced acute colitis symptoms in mice, Front Pharmacol., 2017, vol. 8: 642. https://doi.org/10.3389/fphar.2017.00642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ding S., Abudupataer M., Zhou Z. et al. Histamine deficiency aggravates cardiac injury through miR-206/216b-Atg13 axis-mediated autophagic-dependant apoptosis, Cell Death Dis., 2018, vol. 9, no. 6, p. 694. https://doi.org/10.1038/s41419-018-0723-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Izquierdo-Casas, J., Comas-Basté, O., Latorre-Moratalla, M.L., et al., Low serum diamine oxidase (DAO) activity levels in patients with migraine, J. Physiol. Biochem., 2018, vol. 74, no. 1, pp. 93—99. https://doi.org/10.1007/s13105-017-0571-3

    Article  CAS  PubMed  Google Scholar 

  104. Jia, H.Z., Liu, S.L., Zou, Y.F., et al., MicroRNA-223 is involved in the pathogenesis of atopic dermatitis by affecting histamine-N-methyltransferase, Cell Mol. Biol. (Noisy-le-grand), 2018, vol. 64, no. 3, pp. 103—107. https://doi.org/10.14715/cmb/2018.64.3.17

    Article  Google Scholar 

  105. Kennedy, L., Hargrove, L., Demieville, J., et al., Knockout of l-histidine decarboxylase prevents cholangiocyte damage and hepatic fibrosis in mice subjected to high-fat diet feeding via disrupted histamine/leptin signaling, Am. J. Pathol., 2018, vol. 188, no. 3, pp. 600—615. https://doi.org/10.1016/j.ajpath.2017.11.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Muguruma, Y., Tsutsui, H., Noda, T., et al., Widely targeted metabolomics of Alzheimer’s disease postmortem cerebrospinal fluid based on 9-fluorenylmethyl chloroformate derivatized ultra-high performance liquid chromatography tandem mass spectrometry, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 2018, vol. 1091, pp. 53—66. https://doi.org/10.1016/j.jchromb.2018.05.031

    Article  CAS  PubMed  Google Scholar 

  107. Zhou, Y., Gao, C., Wang, H., et al., Histamine H1 type receptor antagonist loratadine ameliorates oxidized LDL induced endothelial dysfunction, Biomed. Pharmacother., 2018, vol. 106, pp. 1448—1453. https://doi.org/10.1016/j.biopha.2018.07.025

    Article  CAS  PubMed  Google Scholar 

  108. Poluzzi, E., Raschi, E., Godman, B., et al., Pro-arrhythmic potential of oral antihistamines (H1): combining adverse event reports with drug utilization data across Europe, PLoS One, 2015, vol. 10, no. 3. e0119551. https://doi.org/10.1371/journal.pone.0119551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang, M., Pang, X., Letourneau, R., et al., Acute stress induces cardiac mast cell activation and histamine release, effects that are increased in apolipoprotein E knockout mice, Cardiovasc. Res., 2002, vol. 55, no. 1, pp. 150—160.

    Article  CAS  PubMed  Google Scholar 

  110. Conti, P., Lessiani, G., Kritas, S.K., et al., Mast cells emerge as mediators of atherosclerosis: special emphasis on IL-37 inhibition, Tissue Cell, 2017, vol. 49, no. 3, pp. 393—400. https://doi.org/10.1016/j.tice.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  111. Barata-Antunes, S., Cristóvão, A.C., Pires, J., et al., Dual role of histamine on microglia-induced neurodegeneration, Biochim. Biophys. Acta., 2017, vol. 1863, no. 3, pp. 764—769. https://doi.org/10.1016/j.bbadis.2016.12.016

    Article  CAS  Google Scholar 

  112. Horio, S., Fujimoto, K., Mizuguchi, H., and Fukui, H., Interleukin-4 up-regulates histamine H1 receptors by activation of H1 receptor gene transcription, Naunyn Schmiedebergs Arch. Pharmacol., 2010, vol. 381, no. 4, pp. 305—313. https://doi.org/10.1007/s00210-010-0491-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kucher.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucher, A.N. Association of Polymorphic Variants of Key Histamine Metabolism Genes and Histamine Receptor Genes with Multifactorial Diseases. Russ J Genet 55, 794–814 (2019). https://doi.org/10.1134/S102279541907010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541907010X

Keywords:

Navigation