Skip to main content
Log in

Regression Model for Time to Flowering of Chickpea Landraces

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Regression models for time to flowering had been developed for VIR chickpea landraces collected in Turkey and Ethiopia. Predicted flowering time coincides closely with experimental data. The difference between models is statistically significant. The impact of the temperature to the model for Ethiopia landraces is weaker than that for Turkey landraces, 48 and 60% respectively. The impact of precipitation on phenotype is more than 80%. The obtained results are in agreement with climate characteristics at collection sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Berger, J., Milroy, S., Turner, N., et al., Chickpea evolution has selected for contrasting phenological mechanisms among different habitats, Euphytica, 2011, vol. 180, pp. 1—15. https://doi.org/10.1007/s10681-011-0391-4

    Article  Google Scholar 

  2. Abbo, S., Berge, J., and Turner, N., Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation, Funct. Plant Biol., 2003, vol. 30, pp. 1081—1087. https://doi.org/10.1071/FP03084

    Article  Google Scholar 

  3. Kumar, J. and Abbo, S., Genetics of flowering time in chickpea and its bearing on productivity in the semi-arid environments, Adv. Agron., 2001, vol. 72, pp. 107—138. https://doi.org/10.1038/35098564

    Article  CAS  Google Scholar 

  4. Pedersen, P., Boote, K.J., Jones, J.W., and Lauer, J.G., Modifying the CROPGRO—soybean model to improve predictions for the upper Midwest, Agron. J., 2004, vol. 96, pp. 556—564. https://doi.org/10.2134/agronj2004.0556

    Article  Google Scholar 

  5. Setiyono, T.D., Weiss, A., Specht, J., et al., Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions, Field Crops Res., 2007, vol. 100, pp. 257—271. https://doi.org/10.1016/j.fcr.2006.07.011

    Article  Google Scholar 

  6. Major, D.J., Johnson, D.R., Tanner, J.W., and Anderson, I.C., Effects of daylength and temperature on soybean development, Crop Sci., 1975, vol. 15, pp. 174—179. https://doi.org/10.2135/cropsci1975.0011183X001500020009x

    Article  Google Scholar 

  7. Soltani, A., Hammer, G.L., Torabi, B., et al., Modeling chickpea growth and development: phenological development, Field Crops Res., 2006 V. 99, pp. 1—13. https://doi.org/10.1016/j.fcr.2006.02.005

    Article  Google Scholar 

  8. Vadez, V., Soltani, A., and Sinclair, T.R., Modelling possible benefits of root related traits to enhance terminal drought adaptation of chickpea, Field Crops Res., 2012, vol. 137, pp. 108—115. https://doi.org/10.1016/j.fcr.2012.07.022

    Article  Google Scholar 

  9. Kozlov, K.N., Novikova, L.Yu., Cefepova, I.V., and Camconova, M.G., A mathematical model of the effect of climatic factors on soybean development, Biophysics (Moscow), 2018, vol. 63, no. 1, pp. 136—176.

    Article  CAS  Google Scholar 

  10. Hammer, G.L., Vaderlip, R.L., Gibson, G., et al., Genotype-by-environment interaction in grain sorghum: 2. Effects of temperature and photoperiod on ontogeny, Crop Sci., 1989, vol. 29, pp. 376—384. https://doi.org/10.2135/cropsci1989.0011183X002900020029x

    Article  Google Scholar 

  11. Horie, T., Crop ontogeny and development, in Physiology and Determination of Crop Yield, Boote, K.J., Bennett, J.M., Sinclair, T.R., and Paulsen, G.M., Eds., 1994, pp. 153—180.

    Google Scholar 

  12. Piper, E.L., Boote, K.J., Jones, J.W., and Grimm, S.S., Comparison of two phenology models for predicting flowering and maturity date of soybean, Crop Sci., 1996, vol. 36, pp. 1606—1614. https://doi.org/10.2135/cropsci1996.0011183X00360-0060033x

    Article  Google Scholar 

  13. Yin, X., Kropff, M.J., Horie, T., Nakagawa, H., et al., A model for photothermal responses of flowering in rice: 1. Model description and parameterization, Field Crops Res., 1997, vol. 51, pp. 189—200. https://doi.org/10.1016/S0378-4290(96)03456-9

    Article  Google Scholar 

  14. Robertson, M.J., Watkinson, A.R., Kirkegaard, J.A., et al., Environmental and genotypic control of time to flowering in canola and Indian mustard, Austral. J. Agric. Res., 2002, vol. 53, pp. 793—809. https://doi.org/10.1071/AR01182

    Article  Google Scholar 

  15. O'Neill, M. and Ryan, C., Grammatical evolution, IEEE Trans. Evol. Comput., 2001, vol. 5, pp. 349—358. https://doi.org/10.1109/4235.942529

    Article  Google Scholar 

  16. Noorian, F., de Silva, A.M., and Leong, P.H.W., gramEvol: Grammatical Evolution in R, J. Stat. Software, 2016, vol. 71, pp. 1—26. https://doi.org/10.18637/jss.v071.i01

    Article  Google Scholar 

  17. Tibshirani, R., Regression shrinkage and selection via the LASSO, J. R. Stat. Soc., Ser. B, 1996, vol. 58, pp. 267—288.

    Google Scholar 

  18. Kozlov, K., Samsonov, A.M., and Samsonova, M., A software for parameter optimization with Differential Evolution Entirely Parallel method, Peer J. Comput. Sci., 2016, vol. 2. E74. https://doi.org/10.7717/peerj-cs.74

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The calculations were carried out in the Polytechnic supercomputer center of Peter the Great Polytechnic University.

Funding

The work was supported by the Russian Science Foundation, project no. 16-16-00007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Kozlov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, K.N., Samsonova, M.G. & Nuzhdin, S.V. Regression Model for Time to Flowering of Chickpea Landraces. Russ J Genet 55, 1046–1049 (2019). https://doi.org/10.1134/S1022795419070093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419070093

Keywords:

Profiles

  1. K. N. Kozlov