Abstract
Currently developed strategies for efficiently expanding the diversity of cultivated plant species and for producing a promising breeding material are based on the extensive use of previously unclaimed traits and properties, especially associated with changes in the “standard” architectonics of vegetative and generative plant organs, as well as the genes controlling their penetrance. Such an approach of producing highly adaptive, stress-resistant cultivars of a new generation through the use of wider genetic diversity and diversification of cultivars is especially attractive for providing food security of the country. At the same time, the genes (other than in wheat) controlling a specific architectonics are included in the breeding of other cereals that are more well studied molecular genetically than wheat. In the review, one of the promising ways, which consists in the use of information on architectonics in well-studied cereals widely cultivated in the Old World, such as rice, barley, and model objects (including the Arabidopsis), and the search for homologous genes in wheat and the possibility of their transfer by modern molecular biological methods, is considered. The ana-lysis of information made it possible to identify the homologous genes (orthologs) of the architectonics described in barley and rice that are useful and promising to change the standard architectonics of widely cultivated wheat species.
Similar content being viewed by others
REFERENCES
Cox, T.S., Wu, J., Wang, S., et al., Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat, Crop J., 2017, vol. 5, no. 5, pp. 355—362. https://doi.org/10.1016/J.CJ.2017.05.006
Shamanin, V.P., Pototskaya, I.V., Morgunov, A.I., et al., Assessment of breeding material created using wild cereals to increase wheat yield, resistance to diseases and the abiotic stress, Elektron. Nauchno-Metod. Zh. Omsk. Gos. Agrar. Univ., 2015, no. 2(2), pp. 30—35.
Li, A., Liu, D., Yang, W., et al., Synthetic hexaploid wheat: yesterday, today, and tomorrow, Engineering, 2018, vol. 4, no. 4, pp. 552—558. https://doi.org/10.1016/J.ENG.2018.07.001
Goncharov, N.P., Kondratenko, E.Ya., and Vavilova, V.Yu., Genetics of adaptability and the wheat architectonics, Mekhanizmy ustoichivosti rastenii i mikroorganizmov k neblagopriyatnym usloviyam sredy (Mechanisms of Resistance of Plants and Microorganisms to Adverse Environmental Conditions) (Proc. Int. Conf.), Irkutsk, 2018, pp. 13—16.
Goncharov, N.P. and Goncharov, P.L., Precocity, diversification of varieties and the selection in the future, in Selektsiya s.-kh. rastenii v aridnykh territoriyakh Sibiri i Dal’nego Vostoka (Breeding of Agricultural Plants in the Arid Territories of Siberia and the Far East), Novosibirsk, 2015, pp. 74—82.
Guo, Z., Zhao, Y., Röder, M.S., et al., Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat, Sci. Rep., 2018, vol. 8, no. 1, p. 14435. https://doi.org/10.1038/s41598-018-31977-3
Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Pshenitsa (Wheat), vol. 1 of Kul’turnaya flora (Cultivated Flora), Leningrad: Kolos, 1979.
Bespalova, L.A., Borovik, A.N., Kolesnikov, F.A., and Miroshnichenko, T.Yu., The stages and results of the dwarf wheat (T. sphaerococcum Perc.) breeding of in the Krasnodar Research Institute of Agriculture named after P.P. Lukyanenko: 1, Zernovoe Khoz. Ross., 2015, pp. 85—93.
Temirbekova, S.K., Ionov, E.F., Ionova, N.E., and Afanas’eva, Yu.V., Using the ancient species of wheat to improve the children immune system, Agrar. Vestn. Yugo-Vostoka, 2014, nos. 1—2, pp. 46—48.
Zverev, S.V., Politukha, O.V., Starichenkov, A.A., and Abramov, P.S., Emmer wheat and spelt—a return to basics, Khranenie Pererab. Zerna, 2015, nos. 6—7, pp. 48—50.
Dubcovsky, J. and Dvorak, J., Genome plasticity a key factor in the success of polyploid wheat under domestication, Science, 2007, vol. 316, no. 5833, pp. 1862—1866. https://doi.org/10.1126/science.1143986
Martinek, P. and Bednar, J., Changes of spike morphology (multirow spike—MRS, long glumes—LG) in wheat (Triticum aestivum L.) and their importance for breeding, Genetic Collections, Isogenic and Alloplasmic Lines (Proc. Int. Conf.), Novosibirsk, 2001, pp. 192—194.
Konopatskaia, I., Vavilova, V., Blinov, A., and Goncharov, N.P., Spike morphology genes in wheat species (Triticum L.), Proc. Latv. Acad. Sci., Sect. B, 2016, vol. 70, no. 6, pp. 345—355. https://doi.org/10.1515/prolas-2016-0053
Goncharov, N.P., Genus Triticum L. taxonomy: the present and the future, Plant Syst. Evol., 2011, vol. 295, nos. 1—4, pp. 1—11. https://doi.org/10.1007/s00606-011-0480-9
Søgaard, B. and von Wettstein-Knowles, P., Barley: genes and chromosomes, Carlsberg Res. Commun., 1987, vol. 52, no. 2, pp. 123—196. https://doi.org/10.1007/BF02907531
International Barley Genome Sequencing Consortium, Mayer, K.F.X., Waugh, R., et al., A physical, genetic and functional sequence assembly of the barley genome, Nature, 2012, vol. 491, no. 7426, pp. 711—716. https://doi.org/10.1038/nature11543
Koppolu, R., Anwar, N., Sakuma, S., et al., Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 32, pp. 13198—13203. https://doi.org/10.1073/pnas.1221950110
Bull, H., Casao, M.C., Zwirek, M., et al., Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility, Nat. Commun., 2017, vol. 8, no. 1, pp. 1—9. https://doi.org/10.1038/s41467-017-00940-7
Komatsuda, T., Pourkheirandish, M., He, C., et al., Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 4, pp. 1424—1429. https://doi.org/10.1073/pnas.0608580104
Jost, M., Taketa, S., Mascher, M., et al., A homolog of Blade-On-Petiole 1 and 2 (BOP1/2) controls internode length and homeotic changes of the barley inflorescence, Plant Physiol., 2016, vol. 171, p. 00124.2016. https://doi.org/10.1104/pp.16.00124
Yu, J., Hu, S., Wang, J., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. indica), Science, 2002, vol. 296, no. 5565, pp. 79—92. https://doi.org/10.1126/science.1068037
Goff, S.A., Ricke, D., Lan, T.-H., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. japonica), Science, 2002, vol. 296, no. 5565, pp. 92—100. https://doi.org/10.1126/science.1068275
Liang, W., Shang, F., Lin, Q., et al., Tillering and panicle branching genes in rice, Gene, 2014, vol. 537, no. 1, pp. 1—5. https://doi.org/10.1016/j.gene.2013.11.058
Xu, C., Wang, Y., Yu, Y., et al., Degradation of MONOCULM 1 by APC/C TAD1 regulates rice tillering, Nat. Commun., 2012, vol. 3, pp. 750—759. https://doi.org/10.1038/ncomms1743
Komatsu, K., Maekawa, M., Ujiie, S., et al., LAX and SPA: major regulators of shoot branching in rice, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 20, pp. 11765—11770. https://doi.org/10.1073/pnas.1932414100
Tabuchi, H., Zhang, Y., Hattori, S., et al., LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems, Plant Cell Online, 2011, vol. 23, no. 9, pp. 3276—3287. https://doi.org/10.1105/tpc.111.088765
Guo, S., Xu, Y., Liu, H., et al., The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14, Nat. Commun., 2013, vol. 4, pp. 1512—1566. https://doi.org/10.1038/ncomms2542
Ishikawa, S., Maekawa, M., Arite, T., et al., Suppression of tiller bud activity in tillering dwarf mutants of rice, Plant Cell Physiol., 2005, vol. 46, no. 1, pp. 79—86. https://doi.org/10.1093/pcp/pci022
Arite, T., Iwata, H., Ohshima, K., et al., DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice, Plant J., 2007, vol. 51, no. 6, pp. 1019—1029. https://doi.org/10.1111/j.1365-313X.2007.03210.x
Arite, T., Umehara, M., Ishikawa, S., et al., D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers, Plant Cell Physiol., 2009, vol. 50, no. 8, pp. 1416—1424. https://doi.org/10.1093/pcp/pcp091
Zou, J., Zhang, S., Zhang, W., et al., The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds, Plant J., 2006, vol. 48, no. 5, pp. 687—696. https://doi.org/10.1111/j.1365-313X.2006.02916.x
Lin, H., Wang, R., Qian, Q., et al., DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth, Plant Cell Online, 2009, vol. 21, no. 5, pp. 1512—1525. https://doi.org/10.1105/tpc.109.065987
Miura, K., Ikeda, M., Matsubara, A., et al., OsSPL14 promotes panicle branching and higher grain productivity in rice, Nat. Genet., 2010, vol. 42, no. 6, pp. 545—549. https://doi.org/10.1038/ng.592
Huang, X., Qian, Q., Liu, Z., et al., Natural variation at the DEP1 locus enhances grain yield in rice, Nat. Genet., 2009, vol. 41, no. 4, pp. 494—497. https://doi.org/10.1038/ng.352
Vavilova, V., Konopatskaia, I., Kuznetsova, A.E., et al., DEP1 gene in wheat species with normal, compactoid and compact spikes, BMC Genet., 2017, vol. 18, suppl. 1: 106. https://doi.org/10.1186/s12863-017-0583-6
Zhu, K., Tang, D., Yan, C., et al., ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in Indica rice, Genetics, 2010, vol. 184, no. 2, pp. 343—350. https://doi.org/10.1534/genetics.109.112045
Piao, R., Jiang, W., Ham, T.H., et al., Map-based cloning of the ERECT PANICLE 3 gene in rice, Theor. Appl. Genet., 2009, vol. 119, no. 8, pp. 1497—1506. https://doi.org/10.1007/s00122-009-1151-x
Ikeda, K., Ito, M., Nagasawa, N., et al., Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F‑box protein, regulates meristem fate, Plant J., 2007, vol. 51, no. 6, pp. 1030—1040. https://doi.org/10.1111/j.1365-313X.2007.03200.x
Ikeda, K., Nagasawa, N., and Nagato, Y., Aberrant panicle organization 1 temporally regulates meristem identity in rice, Dev. Biol., 2005, vol. 282, no. 2, pp. 349—360. https://doi.org/10.1016/j.ydbio.2005.03.016
Ikeda-Kawakatsu, K., Maekawa, M., Izawa, T., et al., ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1, Plant J., 2012, vol. 69, no. 1, pp. 168—180. https://doi.org/10.1111/j.1365-313X.2011.04781.x
Sormacheva, I., Golovnina, K., Vavilova, V., et al., Q gene variability in wheat species with different spike morphology, Genet. Res. Crop Evol., 2015, vol. 62, no. 6, pp. 837—852. https://doi.org/10.1007/s10722-014-0195-1
Xie, Q., Li, N., Yang, Y., et al., Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology, Planta, 2018, vol. 247, no. 5, pp. 1089—1098. https://doi.org/10.1007/s00425-018-2847-4
Wang, Y., Yu, H., Tian, C., et al., Transcriptome association identifies regulators of wheat spike architecture, Plant Physiol., 2017, vol. 175. p. 00694.2017. https://doi.org/10.1104/pp.17.00694
Li, X., Qian, Q., Fu, Z., et al., Control of tillering in rice, Nature, 2003, vol. 422, no. 6932, pp. 618—621. https://doi.org/10.1038/nature01518
Zhang, B., Liu, X., Xu, W., et al., Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat, Sci. Rep., 2015, vol. 5, pp. 1—13. https://doi.org/10.1038/srep12211
Takeda, T., Suwa, Y., Suzuki, M., et al., The OsTB1 gene negatively regulates lateral branching in rice, Plant J., 2003, vol. 33, no. 3, pp. 513—520. https://doi.org/10.1046/j.1365-313X.2003.01648.x
Dixon, L.E., Greenwood, J.R., Bencivenga, S., et al., TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum L.), Plant Cell, 2018, vol. 30. tpc.00961.2017. https://doi.org/10.1105/tpc.17.00961
Ramsay, L., Comadran, J., Druka, A., et al., INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1, Nat. Genet., 2011, vol. 43, no. 2, pp. 169—172. https://doi.org/10.1038/ng.745
Tong, H., Jin, Y., Liu, W., et al., DWARF and LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice, Plant J., 2009, vol. 58, no. 5, pp. 803—816. https://doi.org/10.1111/j.1365-313X.2009.03825.x
Thomas, S.G., Novel Rht-1 dwarfing genes: tools for wheat breeding and dissecting the function of della proteins, J. Exp. Bot., 2017, vol. 68, no. 3, pp. 354—358. https://doi.org/10.1093/jxb/erw509
Huang, Y., Zhao, S., Fu, Y., et al., Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication, Plant J., 2018. https://doi.org/10.1111/tpj.14062
Dobrovolskaya, O., Pont, C., Sibout, R., et al., FRIZZY PANICLE drives supernumerary spikelets in bread wheat, Plant Physiol., 2015, vol. 167, no. 1, pp. 189—199. https://doi.org/10.1104/pp.114.250043
Dobrovolskaya, O.B., Amagai, Y., Popova, K.I., et al., Genes WHEAT FRIZZY PANICLE and SHAM RAMIFICATION 2 independently regulate differentiation of floral meristems in wheat, BMC Plant Biol., 2017, vol. 17, suppl. 2, p. 252. https://doi.org/10.1186/s12870-017-1191-3
Kobayashi, K., Maekawa, M., Miyao, A., et al., PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice, Plant Cell Physiol., 2010, vol. 51, no. 1, pp. 47—57. https://doi.org/10.1093/pcp/pcp166
Appels, R., Eversole, K., Feuillet, C., et al., Shifting the limits in wheat research and breeding using a fully annotated reference genome, Science, 2018, vol. 361, no. 6403. eaar7191. https://doi.org/10.1126/science.aar7191
Jia, J., Zhao, S., Kong, X., et al., Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation, Nature, 2013, vol. 496, no. 7443, pp. 91—95. https://doi.org/10.1038/nature12028
Marino, R., Volante, A., Brandolini, A., and Heun, M., A high-resolution einkorn (Triticum monococcum L.) linkage map involving wild, domesticated and feral einkorn genotypes, Plant Breed., 2018, vol. 137, no. 5, pp. 682—690. https://doi.org/10.1111/pbr.12637
Gil-Humanes, J., Wang, Y., Liang, Z., et al., High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9, Plant J., 2017, vol. 89, no. 6, pp. 1251—1262. https://doi.org/10.1111/tpj.13446
Liang, Z., Chen, K., Li, T., et al., Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes, Nat. Commun., 2017, vol. 8, p. 14261. https://doi.org/10.1038/ncomms14261
Sánchez-León, S., Gil-Humanes, J., Ozuna, C.V., et al., Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9, Plant Biotechnol. J., 2018, vol. 16, no. 4, pp. 902—910. https://doi.org/10.1111/pbi.12837
Genaev, M.A., Komyshev, E.G., Fu Hao, et al., SpikeDroidDB—an information system for annotation of morphometric characteristics of wheat spike, Vavilovskii Zh. Genet. Sel., 2018, vol. 22, no. 1, pp. 132—140. doi 10.18699/VJ18.340
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by A. Barkhash
Rights and permissions
About this article
Cite this article
Ustyantsev, K.V., Goncharov, N.P. Homology of Genes Controlling Architectonics of Vegetative and Generative Organs in Barley and Rice and Their Application for Wheat Biodiversity Expansion and Breeding. Russ J Genet 55, 535–543 (2019). https://doi.org/10.1134/S1022795419050156
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1022795419050156

