Skip to main content

Advertisement

Log in

Homology of Genes Controlling Architectonics of Vegetative and Generative Organs in Barley and Rice and Their Application for Wheat Biodiversity Expansion and Breeding

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Currently developed strategies for efficiently expanding the diversity of cultivated plant species and for producing a promising breeding material are based on the extensive use of previously unclaimed traits and properties, especially associated with changes in the “standard” architectonics of vegetative and generative plant organs, as well as the genes controlling their penetrance. Such an approach of producing highly adaptive, stress-resistant cultivars of a new generation through the use of wider genetic diversity and diversification of cultivars is especially attractive for providing food security of the country. At the same time, the genes (other than in wheat) controlling a specific architectonics are included in the breeding of other cereals that are more well studied molecular genetically than wheat. In the review, one of the promising ways, which consists in the use of information on architectonics in well-studied cereals widely cultivated in the Old World, such as rice, barley, and model objects (including the Arabidopsis), and the search for homologous genes in wheat and the possibility of their transfer by modern molecular biological methods, is considered. The ana-lysis of information made it possible to identify the homologous genes (orthologs) of the architectonics described in barley and rice that are useful and promising to change the standard architectonics of widely cultivated wheat species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cox, T.S., Wu, J., Wang, S., et al., Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat, Crop J., 2017, vol. 5, no. 5, pp. 355—362. https://doi.org/10.1016/J.CJ.2017.05.006

    Article  Google Scholar 

  2. Shamanin, V.P., Pototskaya, I.V., Morgunov, A.I., et al., Assessment of breeding material created using wild cereals to increase wheat yield, resistance to diseases and the abiotic stress, Elektron. Nauchno-Metod. Zh. Omsk. Gos. Agrar. Univ., 2015, no. 2(2), pp. 30—35.

  3. Li, A., Liu, D., Yang, W., et al., Synthetic hexaploid wheat: yesterday, today, and tomorrow, Engineering, 2018, vol. 4, no. 4, pp. 552—558. https://doi.org/10.1016/J.ENG.2018.07.001

    Article  CAS  Google Scholar 

  4. Goncharov, N.P., Kondratenko, E.Ya., and Vavilova, V.Yu., Genetics of adaptability and the wheat architectonics, Mekhanizmy ustoichivosti rastenii i mikroorganizmov k neblagopriyatnym usloviyam sredy (Mechanisms of Resistance of Plants and Microorganisms to Adverse Environmental Conditions) (Proc. Int. Conf.), Irkutsk, 2018, pp. 13—16.

  5. Goncharov, N.P. and Goncharov, P.L., Precocity, diversification of varieties and the selection in the future, in Selektsiya s.-kh. rastenii v aridnykh territoriyakh Sibiri i Dal’nego Vostoka (Breeding of Agricultural Plants in the Arid Territories of Siberia and the Far East), Novosibirsk, 2015, pp. 74—82.

  6. Guo, Z., Zhao, Y., Röder, M.S., et al., Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat, Sci. Rep., 2018, vol. 8, no. 1, p. 14435. https://doi.org/10.1038/s41598-018-31977-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Pshenitsa (Wheat), vol. 1 of Kul’turnaya flora (Cultivated Flora), Leningrad: Kolos, 1979.

  8. Bespalova, L.A., Borovik, A.N., Kolesnikov, F.A., and Miroshnichenko, T.Yu., The stages and results of the dwarf wheat (T. sphaerococcum Perc.) breeding of in the Krasnodar Research Institute of Agriculture named after P.P. Lukyanenko: 1, Zernovoe Khoz. Ross., 2015, pp. 85—93.

    Google Scholar 

  9. Temirbekova, S.K., Ionov, E.F., Ionova, N.E., and Afanas’eva, Yu.V., Using the ancient species of wheat to improve the children immune system, Agrar. Vestn. Yugo-Vostoka, 2014, nos. 1—2, pp. 46—48.

  10. Zverev, S.V., Politukha, O.V., Starichenkov, A.A., and Abramov, P.S., Emmer wheat and spelt—a return to basics, Khranenie Pererab. Zerna, 2015, nos. 6—7, pp. 48—50.

  11. Dubcovsky, J. and Dvorak, J., Genome plasticity a key factor in the success of polyploid wheat under domestication, Science, 2007, vol. 316, no. 5833, pp. 1862—1866. https://doi.org/10.1126/science.1143986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinek, P. and Bednar, J., Changes of spike morphology (multirow spike—MRS, long glumes—LG) in wheat (Triticum aestivum L.) and their importance for breeding, Genetic Collections, Isogenic and Alloplasmic Lines (Proc. Int. Conf.), Novosibirsk, 2001, pp. 192—194.

  13. Konopatskaia, I., Vavilova, V., Blinov, A., and Goncharov, N.P., Spike morphology genes in wheat species (Triticum L.), Proc. Latv. Acad. Sci., Sect. B, 2016, vol. 70, no. 6, pp. 345—355. https://doi.org/10.1515/prolas-2016-0053

    Article  Google Scholar 

  14. Goncharov, N.P., Genus Triticum L. taxonomy: the present and the future, Plant Syst. Evol., 2011, vol. 295, nos. 1—4, pp. 1—11. https://doi.org/10.1007/s00606-011-0480-9

    Article  Google Scholar 

  15. Søgaard, B. and von Wettstein-Knowles, P., Barley: genes and chromosomes, Carlsberg Res. Commun., 1987, vol. 52, no. 2, pp. 123—196. https://doi.org/10.1007/BF02907531

    Article  Google Scholar 

  16. International Barley Genome Sequencing Consortium, Mayer, K.F.X., Waugh, R., et al., A physical, genetic and functional sequence assembly of the barley genome, Nature, 2012, vol. 491, no. 7426, pp. 711—716. https://doi.org/10.1038/nature11543

  17. Koppolu, R., Anwar, N., Sakuma, S., et al., Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 32, pp. 13198—13203. https://doi.org/10.1073/pnas.1221950110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bull, H., Casao, M.C., Zwirek, M., et al., Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility, Nat. Commun., 2017, vol. 8, no. 1, pp. 1—9. https://doi.org/10.1038/s41467-017-00940-7

    Article  CAS  Google Scholar 

  19. Komatsuda, T., Pourkheirandish, M., He, C., et al., Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 4, pp. 1424—1429. https://doi.org/10.1073/pnas.0608580104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jost, M., Taketa, S., Mascher, M., et al., A homolog of Blade-On-Petiole 1 and 2 (BOP1/2) controls internode length and homeotic changes of the barley inflorescence, Plant Physiol., 2016, vol. 171, p. 00124.2016. https://doi.org/10.1104/pp.16.00124

  21. Yu, J., Hu, S., Wang, J., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. indica), Science, 2002, vol. 296, no. 5565, pp. 79—92. https://doi.org/10.1126/science.1068037

    Article  CAS  PubMed  Google Scholar 

  22. Goff, S.A., Ricke, D., Lan, T.-H., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. japonica), Science, 2002, vol. 296, no. 5565, pp. 92—100. https://doi.org/10.1126/science.1068275

    Article  CAS  PubMed  Google Scholar 

  23. Liang, W., Shang, F., Lin, Q., et al., Tillering and panicle branching genes in rice, Gene, 2014, vol. 537, no. 1, pp. 1—5. https://doi.org/10.1016/j.gene.2013.11.058

    Article  CAS  PubMed  Google Scholar 

  24. Xu, C., Wang, Y., Yu, Y., et al., Degradation of MONOCULM 1 by APC/C TAD1 regulates rice tillering, Nat. Commun., 2012, vol. 3, pp. 750—759. https://doi.org/10.1038/ncomms1743

    Article  CAS  PubMed  Google Scholar 

  25. Komatsu, K., Maekawa, M., Ujiie, S., et al., LAX and SPA: major regulators of shoot branching in rice, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 20, pp. 11765—11770. https://doi.org/10.1073/pnas.1932414100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tabuchi, H., Zhang, Y., Hattori, S., et al., LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems, Plant Cell Online, 2011, vol. 23, no. 9, pp. 3276—3287. https://doi.org/10.1105/tpc.111.088765

    Article  CAS  Google Scholar 

  27. Guo, S., Xu, Y., Liu, H., et al., The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14, Nat. Commun., 2013, vol. 4, pp. 1512—1566. https://doi.org/10.1038/ncomms2542

    Article  CAS  Google Scholar 

  28. Ishikawa, S., Maekawa, M., Arite, T., et al., Suppression of tiller bud activity in tillering dwarf mutants of rice, Plant Cell Physiol., 2005, vol. 46, no. 1, pp. 79—86. https://doi.org/10.1093/pcp/pci022

    Article  CAS  PubMed  Google Scholar 

  29. Arite, T., Iwata, H., Ohshima, K., et al., DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice, Plant J., 2007, vol. 51, no. 6, pp. 1019—1029. https://doi.org/10.1111/j.1365-313X.2007.03210.x

    Article  CAS  PubMed  Google Scholar 

  30. Arite, T., Umehara, M., Ishikawa, S., et al., D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers, Plant Cell Physiol., 2009, vol. 50, no. 8, pp. 1416—1424. https://doi.org/10.1093/pcp/pcp091

    Article  CAS  PubMed  Google Scholar 

  31. Zou, J., Zhang, S., Zhang, W., et al., The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds, Plant J., 2006, vol. 48, no. 5, pp. 687—696. https://doi.org/10.1111/j.1365-313X.2006.02916.x

    Article  CAS  PubMed  Google Scholar 

  32. Lin, H., Wang, R., Qian, Q., et al., DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth, Plant Cell Online, 2009, vol. 21, no. 5, pp. 1512—1525. https://doi.org/10.1105/tpc.109.065987

    Article  CAS  Google Scholar 

  33. Miura, K., Ikeda, M., Matsubara, A., et al., OsSPL14 promotes panicle branching and higher grain productivity in rice, Nat. Genet., 2010, vol. 42, no. 6, pp. 545—549. https://doi.org/10.1038/ng.592

    Article  CAS  PubMed  Google Scholar 

  34. Huang, X., Qian, Q., Liu, Z., et al., Natural variation at the DEP1 locus enhances grain yield in rice, Nat. Genet., 2009, vol. 41, no. 4, pp. 494—497. https://doi.org/10.1038/ng.352

    Article  CAS  PubMed  Google Scholar 

  35. Vavilova, V., Konopatskaia, I., Kuznetsova, A.E., et al., DEP1 gene in wheat species with normal, compactoid and compact spikes, BMC Genet., 2017, vol. 18, suppl. 1: 106. https://doi.org/10.1186/s12863-017-0583-6

  36. Zhu, K., Tang, D., Yan, C., et al., ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in Indica rice, Genetics, 2010, vol. 184, no. 2, pp. 343—350. https://doi.org/10.1534/genetics.109.112045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Piao, R., Jiang, W., Ham, T.H., et al., Map-based cloning of the ERECT PANICLE 3 gene in rice, Theor. Appl. Genet., 2009, vol. 119, no. 8, pp. 1497—1506. https://doi.org/10.1007/s00122-009-1151-x

    Article  CAS  PubMed  Google Scholar 

  38. Ikeda, K., Ito, M., Nagasawa, N., et al., Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F‑box protein, regulates meristem fate, Plant J., 2007, vol. 51, no. 6, pp. 1030—1040. https://doi.org/10.1111/j.1365-313X.2007.03200.x

    Article  CAS  PubMed  Google Scholar 

  39. Ikeda, K., Nagasawa, N., and Nagato, Y., Aberrant panicle organization 1 temporally regulates meristem identity in rice, Dev. Biol., 2005, vol. 282, no. 2, pp. 349—360. https://doi.org/10.1016/j.ydbio.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  40. Ikeda-Kawakatsu, K., Maekawa, M., Izawa, T., et al., ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1, Plant J., 2012, vol. 69, no. 1, pp. 168—180. https://doi.org/10.1111/j.1365-313X.2011.04781.x

    Article  CAS  PubMed  Google Scholar 

  41. Sormacheva, I., Golovnina, K., Vavilova, V., et al., Q gene variability in wheat species with different spike morphology, Genet. Res. Crop Evol., 2015, vol. 62, no. 6, pp. 837—852. https://doi.org/10.1007/s10722-014-0195-1

    Article  Google Scholar 

  42. Xie, Q., Li, N., Yang, Y., et al., Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology, Planta, 2018, vol. 247, no. 5, pp. 1089—1098. https://doi.org/10.1007/s00425-018-2847-4

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y., Yu, H., Tian, C., et al., Transcriptome association identifies regulators of wheat spike architecture, Plant Physiol., 2017, vol. 175. p. 00694.2017. https://doi.org/10.1104/pp.17.00694

  44. Li, X., Qian, Q., Fu, Z., et al., Control of tillering in rice, Nature, 2003, vol. 422, no. 6932, pp. 618—621. https://doi.org/10.1038/nature01518

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, B., Liu, X., Xu, W., et al., Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat, Sci. Rep., 2015, vol. 5, pp. 1—13. https://doi.org/10.1038/srep12211

    Article  Google Scholar 

  46. Takeda, T., Suwa, Y., Suzuki, M., et al., The OsTB1 gene negatively regulates lateral branching in rice, Plant J., 2003, vol. 33, no. 3, pp. 513—520. https://doi.org/10.1046/j.1365-313X.2003.01648.x

    Article  CAS  PubMed  Google Scholar 

  47. Dixon, L.E., Greenwood, J.R., Bencivenga, S., et al., TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum L.), Plant Cell, 2018, vol. 30. tpc.00961.2017. https://doi.org/10.1105/tpc.17.00961

  48. Ramsay, L., Comadran, J., Druka, A., et al., INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1, Nat. Genet., 2011, vol. 43, no. 2, pp. 169—172. https://doi.org/10.1038/ng.745

    Article  CAS  PubMed  Google Scholar 

  49. Tong, H., Jin, Y., Liu, W., et al., DWARF and LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice, Plant J., 2009, vol. 58, no. 5, pp. 803—816. https://doi.org/10.1111/j.1365-313X.2009.03825.x

    Article  PubMed  Google Scholar 

  50. Thomas, S.G., Novel Rht-1 dwarfing genes: tools for wheat breeding and dissecting the function of della proteins, J. Exp. Bot., 2017, vol. 68, no. 3, pp. 354—358. https://doi.org/10.1093/jxb/erw509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang, Y., Zhao, S., Fu, Y., et al., Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication, Plant J., 2018. https://doi.org/10.1111/tpj.14062

  52. Dobrovolskaya, O., Pont, C., Sibout, R., et al., FRIZZY PANICLE drives supernumerary spikelets in bread wheat, Plant Physiol., 2015, vol. 167, no. 1, pp. 189—199. https://doi.org/10.1104/pp.114.250043

    Article  CAS  PubMed  Google Scholar 

  53. Dobrovolskaya, O.B., Amagai, Y., Popova, K.I., et al., Genes WHEAT FRIZZY PANICLE and SHAM RAMIFICATION 2 independently regulate differentiation of floral meristems in wheat, BMC Plant Biol., 2017, vol. 17, suppl. 2, p. 252. https://doi.org/10.1186/s12870-017-1191-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kobayashi, K., Maekawa, M., Miyao, A., et al., PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice, Plant Cell Physiol., 2010, vol. 51, no. 1, pp. 47—57. https://doi.org/10.1093/pcp/pcp166

    Article  CAS  PubMed  Google Scholar 

  55. Appels, R., Eversole, K., Feuillet, C., et al., Shifting the limits in wheat research and breeding using a fully annotated reference genome, Science, 2018, vol. 361, no. 6403. eaar7191. https://doi.org/10.1126/science.aar7191

  56. Jia, J., Zhao, S., Kong, X., et al., Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation, Nature, 2013, vol. 496, no. 7443, pp. 91—95. https://doi.org/10.1038/nature12028

    Article  CAS  PubMed  Google Scholar 

  57. Marino, R., Volante, A., Brandolini, A., and Heun, M., A high-resolution einkorn (Triticum monococcum L.) linkage map involving wild, domesticated and feral einkorn genotypes, Plant Breed., 2018, vol. 137, no. 5, pp. 682—690. https://doi.org/10.1111/pbr.12637

    Article  CAS  Google Scholar 

  58. Gil-Humanes, J., Wang, Y., Liang, Z., et al., High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9, Plant J., 2017, vol. 89, no. 6, pp. 1251—1262. https://doi.org/10.1111/tpj.13446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liang, Z., Chen, K., Li, T., et al., Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes, Nat. Commun., 2017, vol. 8, p. 14261. https://doi.org/10.1038/ncomms14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sánchez-León, S., Gil-Humanes, J., Ozuna, C.V., et al., Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9, Plant Biotechnol. J., 2018, vol. 16, no. 4, pp. 902—910. https://doi.org/10.1111/pbi.12837

    Article  CAS  PubMed  Google Scholar 

  61. Genaev, M.A., Komyshev, E.G., Fu Hao, et al., SpikeDroidDB—an information system for annotation of morphometric characteristics of wheat spike, Vavilovskii Zh. Genet. Sel., 2018, vol. 22, no. 1, pp. 132—140. doi 10.18699/VJ18.340

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Ustyantsev.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustyantsev, K.V., Goncharov, N.P. Homology of Genes Controlling Architectonics of Vegetative and Generative Organs in Barley and Rice and Their Application for Wheat Biodiversity Expansion and Breeding. Russ J Genet 55, 535–543 (2019). https://doi.org/10.1134/S1022795419050156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419050156

Keywords: