Skip to main content
Log in

The Rate of Human Germline Mutations—Variable Factor of Evolution and Diseases

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The emergence of genetic diseases and evolutionary processes are associated with the flow of genetic information from one generation to another, in which genetic information carried by gametes can be changed by the appearance of de novo germline mutations. The rate of germline mutations determines the rate of evolution and the incidence of heritable disorders. Despite the great theoretical and practical importance, the problem of establishing mutation rates and their dependence on different factors remains scarcely studied, and the mutation rate values obtained by different methods vary considerably. The review discusses different ways of estimating the rate of these mutations and makes an attempt to explain the reasons for discrepancies in the data obtained. Three levels of the mutation formation are considered: (1) mutations that are formed during the development of a given individual during gametogenesis (basic mutations); (2) mutations transmitted to offspring and determining differences in the genomes of consecutive generations (parents and offspring), which include basic mutations and possible changes resulting from complex processes of sperm transfer to oocyte, fertilization, and subsequent events that lead to only one viable offspring of hundreds of millions spermatozoa and oocytes; (3) mutations which are formed at level 2, fixed in evolution, and determine evolutionary processes and differences between genomes, in particular, of hominoids, hominids, and hominins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Scally, A., Mutation rates and the evolution of germline structure, Philos. Trans. R. Soc. Lond., B, 2016, vol. 371, no. 1699. https://doi.org/10.1098/rstb.2015.0137

  2. Lynch, M., Rate, molecular spectrum, and consequences of human mutation, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 3, pp. 961—968. https://doi.org/10.1073/pnas.0912629107

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campbell, I.M., Yuan, B., Robberecht, C., et al., Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders, Am. J. Hum. Genet., 2014, vol. 95, no. 2, pp. 173—182. https://doi.org/10.1016/j.ajhg.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rahbari, R., Wuster, A., Lindsay, S.J., et al., Timing, rates and spectra of human germline mutation, Nat. Genet., 2016, vol. 48, no. 2, pp. 126—133. https://doi.org/10.1038/ng.3469

    Article  CAS  PubMed  Google Scholar 

  5. Tang, W.W., Kobayashi, T., Irie, N., et al., Specification and epigenetic programming of the human germ line, Nat. Rev. Genet., 2016, vol. 17, no. 10, pp. 585—600. https://doi.org/10.1038/nrg.2016.88

    Article  CAS  PubMed  Google Scholar 

  6. Alekseenko, I.V., Kuzmich, A.I., Pleshkan, V.V., et al., The cause of cancer mutations: improvable bad life or inevitable stochastic replication errors?, Mol. Biol. (Moscow), 2016, vol. 50, no. 6, pp. 906—921. https://doi.org/10.7868/S0026898416060033

    Article  CAS  Google Scholar 

  7. Sverdlov, E.D. and Mineev, K., Mutation rate in stem cells: an underestimated barrier on the way to therapy, Trends Mol. Med., 2013, vol. 19, no. 5, pp. 273—280. https://doi.org/10.1016/j.molmed.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  8. Kondrashov, F.A. and Kondrashov, A.S., Measurements of spontaneous rates of mutations in the recent past and the near future, Philos. Trans. R. Soc. Lond., B, 2010, vol. 365, no. 1544, pp. 1169—1176. https://doi.org/10.1098/rstb.2009.0286

    Article  Google Scholar 

  9. Lynch, M., Evolution of the mutation rate, Trends Genet., 2010, vol. 26, no. 8, pp. 345—352. https://doi.org/10.1016/j.tig.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, J. and Song, Y., Single cell sequencing: a distinct new field, Clin. Transl. Med., 2017, vol. 6, no. 1, p. 10. https://doi.org/10.1186/s40169-017-0139-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Golov, A.K., Razin, S.V., and Gavrilov, A.A., Single-cell genome-wide studies give new insight into nongenetic cell-to-cell variability in animals, Histochem. Cell Biol., 2016, vol. 146, no. 3, pp. 239—254. https://doi.org/10.1007/s00418-016-1466-z

    Article  CAS  PubMed  Google Scholar 

  12. Junker, J.P. and van Oudenaarden, A., Every cell is special: genome-wide studies add a new dimension to single-cell biology, Cell, 2014, vol. 157, no. 1, pp. 8—11. https://doi.org/10.1016/j.cell.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J., Fan, H.C., Behr, B., et al., Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm, Cell, 2012, vol. 150, no. 2, pp. 402—412. https://doi.org/10.1016/j.cell.2012.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirkness, E.F., Grindberg, R.V., Yee-Greenbaum, J., et al., Sequencing of isolated sperm cells for direct haplotyping of a human genome, Genome Res., 2013, vol. 23, no. 5, pp. 826—832. https://doi.org/10.1101/gr.144600.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alex, B. and Moorjani, P., DNA dating: how molecular clocks are refining human evolution’s timeline, Conversation, 2017.

    Google Scholar 

  16. Lu, S., Zong, C., Fan, W., et al., Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing, Science, 2012, vol. 338, no. 6114, pp. 1627—1630. https://doi.org/10.1126/science.1229112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hou, Y., Fan, W., Yan, L., et al., Genome analyses of single human oocytes, Cell, 2013, vol. 155, no. 7, pp. 1492—1506. https://doi.org/10.1016/j.cell.2013.11.040

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Y. and Navin, N.E., Advances and applications of single-cell sequencing technologies, Mol. Cell, 2015, vol. 58, no. 4, pp. 598—609. https://doi.org/10.1016/j.molcel.2015.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keightley, P.D., Rates and fitness consequences of new mutations in humans, Genetics, 2012, vol. 190, no. 2, pp. 295—304. https://doi.org/10.1534/genetics.111.134668

    Article  PubMed  PubMed Central  Google Scholar 

  20. Acuna-Hidalgo, R., Veltman, J.A., and Hoischen, A., New insights into the generation and role of de novo mutations in health and disease, Genome Biol., 2016, vol. 17, no. 1, p. 241. https://doi.org/10.1186/s13059-016-1110-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Segurel, L., Wyman, M.J., and Przeworski, M., Determinants of mutation rate variation in the human germline, Annu. Rev. Genomics Hum. Genet., 2014, vol. 15, pp. 47—70. https://doi.org/10.1146/annurev-genom-031714-125740

    Article  CAS  PubMed  Google Scholar 

  22. Kondrashov, A.S., Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases, Hum. Mutat., 2003, vol. 21, no. 1, pp. 12—27. https://doi.org/10.1002/humu.10147

    Article  CAS  PubMed  Google Scholar 

  23. de Ligt, J., Veltman, J.A., and Vissers, L.E., Point mutations as a source of de novo genetic disease, Curr. Opin. Genet. Dev., 2013, vol. 23, no. 3, pp. 257—263. https://doi.org/10.1016/j.gde.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  24. Smith, T., Ho, G., Christodoulou, J., et al., Extensive variation in the mutation rate between and within human genes associated with Mendelian disease, Hum. Mutat., 2016, vol. 37, no. 5, pp. 488—494. https://doi.org/10.1002/humu.22967

    Article  CAS  PubMed  Google Scholar 

  25. Campbell, C.D. and Eichler, E.E., Properties and rates of germline mutations in humans, Trends Genet., 2013, vol. 29, no. 10, pp. 575—584. https://doi.org/10.1016/j.tig.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lipson, M., Loh, P.R., Sankararaman, S., et al., Calibrating the human mutation rate via ancestral recombination density in diploid genomes, PLoS Genet., 2015, vol. 11, no. 11. e1005550. https://doi.org/10.1371/journal.pgen.1005550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moorjani, P., Gao, Z., and Przeworski, M., Human germline mutation and the erratic evolutionary clock, PLoS Biol., 2016, vol. 14, no. 10. e2000744. https://doi.org/10.1371/journal.pbio.2000744

  28. Conrad, D.F., Keebler, J.E., DePristo, M.A., et al., Variation in genome-wide mutation rates within and between human families, Nat. Genet., 2011, vol. 43, no. 7, pp. 712—714. https://doi.org/10.1038/ng.862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kong, A., Frigge, M.L., Masson, G., et al., Rate of de novo mutations and the importance of father’s age to disease risk, Nature, 2012, vol. 488, no. 7412, pp. 471—475. https://doi.org/10.1038/nature11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jonsson, H., Sulem, P., Kehr, B., et al., Parental influence on human germline de novo mutations in 1548 trios from Iceland, Nature, 2017, vol. 549, no. 7673, pp. 519—522. https://doi.org/10.1038/nature24018

    Article  CAS  PubMed  Google Scholar 

  31. Itsara, A., Wu, H., Smith, J.D., et al., De novo rates and selection of large copy number variation, Genome Res., 2010, vol. 20, no. 11, pp. 1469—1481. https://doi.org/10.1101/gr.107680.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forsberg, L.A., Gisselsson, D., and Dumanski, J.P., Mosaicism in health and disease—clones picking up speed, Nat. Rev. Genet., 2017, vol. 18, no. 2, pp. 128—142. https://doi.org/10.1038/nrg.2016.145

    Article  CAS  PubMed  Google Scholar 

  33. Kloosterman, W.P., Francioli, L.C., Hormozdiari, F., et al., Characteristics of de novo structural changes in the human genome, Genome Res., 2015, vol. 25, no. 6, pp. 792—801. https://doi.org/10.1101/gr.185041.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moorjani, P., Amorim, C.E., Arndt, P.F., et al., Variation in the molecular clock of primates, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 38, pp. 10607—10612. https://doi.org/10.1073/pnas.1600374113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilke, T., Schultheiß, R., and Albrecht, C., As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates, Am. Malac. Bull., 2009, vol. 27, pp. 25—45. https://doi.org/10.4003/006.027.0203

    Article  Google Scholar 

  36. Chen, C., Qi, H., Shen, Y., et al., Contrasting determinants of mutation rates in germline and soma, Genetics, 2017, vol. 207, no. 1, pp. 255—267. https://doi.org/10.1534/genetics.117.1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amster, G. and Sella, G., Life history effects on the molecular clock of autosomes and sex chromosomes, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 6, pp. 1588—1593. https://doi.org/10.1073/pnas.1515798113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Der Sarkissian, C., Allentoft, M.E., Avila-Arcos, M.C., et al., Ancient genomics, Philos. Trans. R. Soc. Lond., B, 2015, vol. 370, no. 1660, p. 20130387. https://doi.org/10.1098/rstb.2013.0387

    Article  CAS  Google Scholar 

  39. Meyer, M., Kircher, M., Gansauge, M.T., et al., A high-coverage genome sequence from an archaic Denisovan individual, Science, 2012, vol. 338, no. 6104, pp. 222—226. https://doi.org/10.1126/science.1224344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shendure, J. and Akey, J.M., The origins, determinants, and consequences of human mutations, Science, 2015, vol. 349, no. 6255, pp. 1478—1483. https://doi.org/10.1126/science.aaa9119

    Article  CAS  PubMed  Google Scholar 

  41. Moorjani, P., Sankararaman, S., Fu, Q., et al., A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45 000 years, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 20, pp. 5652—5657. https://doi.org/10.1073/pnas.1514696113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Segurel, L., Thompson, E.E., Flutre, T., et al., The ABO blood group is a trans-species polymorphism in primates, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 45, pp. 18493—18498. https://doi.org/10.1073/pnas.1210603109

    Article  PubMed  PubMed Central  Google Scholar 

  43. Francioli, L.C., Polak, P.P., Koren, A., et al., Genome-wide patterns and properties of de novo mutations in humans, Nat. Genet., 2015, vol. 47, no. 7, pp. 822—826. https://doi.org/10.1038/ng.3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goriely, A., Decoding germline de novo point mutations, Nat. Genet., 2016, vol. 48, no. 8, pp. 823—824. https://doi.org/10.1038/ng.3629

    Article  CAS  PubMed  Google Scholar 

  45. Goldmann, J.M., Wong, W.S., Pinelli, M., et al., Parent-of-origin-specific signatures of de novo mutations, Nat. Genet., 2016, vol. 48, no. 8, pp. 935—939. https://doi.org/10.1038/ng.3597

    Article  CAS  PubMed  Google Scholar 

  46. Crow, J.F., The origins, patterns and implications of human spontaneous mutation, Nat. Rev. Genet., 2000, vol. 1, no. 1, pp. 40—47. https://doi.org/10.1038/35049558

    Article  CAS  PubMed  Google Scholar 

  47. Maher, G.J., Rajpert-De Meyts, E., Goriely, A., et al., Cellular correlates of selfish spermatogonial selection, Andrology, 2016, vol. 4, no. 3, pp. 550—553. https://doi.org/10.1111/andr.12185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Narasimhan, V.M., Rahbari, R., Scally, A., et al., Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes, Nat. Commun., 2017, vol. 8, no. 1, p. 303. https://doi.org/10.1038/s41467-017-00323-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scally, A. and Durbin, R., Revising the human mutation rate: implications for understanding human evolution, Nat. Rev. Genet., 2012, vol. 13, no. 10, pp. 745—753. https://doi.org/10.1038/nrg3295

    Article  CAS  PubMed  Google Scholar 

  50. Caldararo, N., Denisovans, Melanesians, Europeans, and Neandertals: the confusion of DNA assumptions and the biological species concept, J. Mol. Evol., 2016, vol. 83, nos. 1—2, pp. 78—87. https://doi.org/10.1007/s00239-016-9755-7

    Article  CAS  PubMed  Google Scholar 

  51. Allentoft, M.E., Collins, M., Harker, D., et al., The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils, Proc. Biol. Sci., 2012, vol. 279, no. 1748, pp. 4724—4733. https://doi.org/10.1098/rspb.2012.1745

  52. Llamas, B., Valverde, G., Fehren-Schmitz, L., et al., From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era, Sci. Technol. Archaeol. Res., 2017, vol. 3, no. 1, pp. 1—14. https://doi.org/10.1080/20548923.2016.1258824

    Article  Google Scholar 

  53. Vernot, B., Tucci, S., Kelso, J., et al., Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals, Science, 2016, vol. 352, no. 6282, pp. 235—239. https://doi.org/10.1126/science.aad9416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Y. Uspenskaya.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspenskaya, N.Y., Akopov, S.B., Snezhkov, E.V. et al. The Rate of Human Germline Mutations—Variable Factor of Evolution and Diseases. Russ J Genet 55, 523–534 (2019). https://doi.org/10.1134/S1022795419050144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419050144

Keywords:

Navigation