Skip to main content
Log in

Genotype of Wolbachia pipientis Endosymbiont Affects Octopamine Metabolism in Drosophila melanogaster Females

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The effect of the genotype of the endosymbiont Wolbachia pipientis on the metabolism of octopamine (one of the main biogenic amines in insects) was studied in young Drosophila melanogaster females. The activity of tyrosine decarboxylase (key octopamine synthesis enzyme) and the activity of octopamine-dependent N-acetyltransferase (the enzyme of its degradation) were measured. It was demonstrated that the activity of both studied enzymes is increased under normal conditions in females infected with bacteria of the pathogenic wMelPop strain and decreased in those infected with bacteria of the wMelCS genotype, while it does not differ from those in uninfected flies in females infected with the wMel genotype. It was also found that the intensity of tyrosine decarboxylase response to heat stress is decreased in all females infected with Wolbachia. Thus, the effect of Wolbachia on octopamine metabolism was for the first time demonstrated in the Drosophila females, and it was shown that the nature of this effect is determined by the symbiont genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Zug, R. and Hammerstein, P., Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected, PLoS One, 2012, vol. 7, no. 6. e38544. https://doi.org/10.1371/journal.pone.0038544

  2. Werren, J.H., Baldo, L., and Clark, M.E., Wolbachia: master manipulators of invertebrate biology, Nat. Rev. Microbiol., 2008, vol. 6, no. 10, pp. 741—751. https://doi.org/10.1038/nrmicro1969

    Article  CAS  PubMed  Google Scholar 

  3. Weeks, A.R., Turelli, M., Harcombe, W.R., et al., From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila, PLoS Biol., 2007, vol. 5, no. 5. https://doi.org/10.1371/journal.pbio.0050114

  4. Teixeira, L., Ferreira, A., and Ashburner, M., The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster, PLoS Biol., 2008. https://doi.org/10.1371/journal.pbio.1000002

  5. Ikeya, T., Broughton, S., Alic, N., et al., The endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila, Proc. R. Soc. B, 2009, vol. 276 (1674), pp. 3799—3807. https://doi.org/10.1098/rspb.2009.0778

  6. Faria, V.G., Martins, N.E., Magalhães, S., et al., Drosophila adaptation to viral infection through defensive symbiont evolution, PLoS Genet., 2016, vol. 12, no. 9. e1006297. https://doi.org/10.1371/journal.pgen.1006297

  7. Toivonen, J.M. and Partridge, L., Endocrine regulation of aging and reproduction in Drosophila, Mol. Cell. Endocrinol., 2009, vol. 299, pp. 39—50. https://doi.org/10.1016/j.mce.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y., Hoffmann, J., Li, Y., et al., Octopamine controls starvation resistance, life span and metabolic traits in Drosophila, Sci. Rep., 2016, vol. 6. e35359. https://doi.org/10.1038/srep35359

    Article  CAS  Google Scholar 

  9. Rauschenbach, I.Yu., Adonyeva, N.V., Alekseev, A.A., et al., Role of arylalkylamine N-acetyltransferase in regulation of biogenic amines levels by gonadotropins in Drosophila, J. Comp. Physiol. B, 2008, vol. 178, pp. 315—320. https://doi.org/10.1007/s00360-007-0224-x

    Article  CAS  PubMed  Google Scholar 

  10. Rohrscheib, C.E., Bondy, E., Josh, P., et al., Wolbachia influences the production of octopamine and affects Drosophila male aggression, Appl. Environ. Microbiol., 2015, vol. 81, pp. 4573—4580. https://doi.org/10.1128/AEM.00573-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gruntenko, N., Chentsova, N.A., Andreenkova, E.V., et al., The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to heat stress, Arch. Insect. Biochem. Physiol., 2004, vol. 55, pp. 55—67. https://doi.org/10.1002/arch.10123

  12. O’Neill, S.L., Giordano, R., Colbert, A.M.E., et al., 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, pp. 2699—2702. https://doi.org/10.1073/pnas.89.7.2699

  13. Braig, H.R., Zhou, W., Dobson, S.L., et al., Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis, J. Bacteriol., 1998, vol. 180, pp. 2373—2378. https://doi.org/10.1360/02tb9320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gruntenko, N., Ilinsky, Y.Y., Adonyeva, N.V., et al., Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions, BMC Evol. Biol., 2017, vol. 17, suppl. 2, p. 252. https://doi.org/10.1186/s12862-017-1104-y

    Article  CAS  Google Scholar 

  15. Gruntenko, N.E., Andreenkova, E.V., Monastirioti, M., and Raushenbakh, I.Yu., Biogenic amines downregulate the activity of enzymes participating in their synthesis in Drosophila adults, Dokl. Biol. Sci., 2001, vol. 379, nos. 1—6, pp. 382—384. https://doi.org/10.1023/A:1011672801835

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. Luis Teixeira (Instituto Gulbenkian de Ciência, Lisbon, Portugal) for providing the D. melanogaster line infected with the Wolbachia wMelPop strain.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 16-04-00060) and by the Budgetary Project no. 0324-2019-0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Rauschenbach.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adonyeva, N.V., Burdina, E.V., Bykov, R.A. et al. Genotype of Wolbachia pipientis Endosymbiont Affects Octopamine Metabolism in Drosophila melanogaster Females. Russ J Genet 55, 653–655 (2019). https://doi.org/10.1134/S1022795419050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419050028

Keywords:

Navigation