Skip to main content
Log in

Genomic Profiling of the Response of Aspergillus oryzae to the Treatment with Bis(2-Pyridine-1-Oxide) Diselenide

Russian Journal of Genetics Aims and scope Submit manuscript

Cite this article

Abstract

We implemented genome-wide expression profiling to identify the mechanisms of toxicity of an organoselenium compound bis(2-pyridine-1-oxide) diselenide to the fungus А. oryzae RIB40. We uncovered changes in the expression levels in 72 genes. In particular, we observed a downregulation in the levels of several copper ion transmembrane transporter genes. In turn, we found a significant upregulation in the genes encoding oxidoreductases. The latter results are supported by biochemical experiments that revealed an increase in oxidoreductase activity in response to bis(2-pyridine-1-oxide) diselenide treatment. The results of a large-scale microarray analysis of the А. oryzae RIB 40 were confirmed by real-time quantitative PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

REFERENCES

  1. Bhowmick, D. and Mugesh, G., Enzyme mimetic chemistry of organoselenium compounds, in Patai’s Chemistry of Functional Groups, Chichester, UK: Wiley, 2013. pp. 1175—1235. https://doi.org/10.1002/9780470682531.pat0726

  2. Ninomiya, M., Garud, D.R., and Koketsu, M., Biologically significant selenium- containing heterocycles, Coord. Chem. Rev., 2011, vol. 255, pp. 2968—2990. https://doi.org/10.1016/j.ccr.2011.07.009

    Article  CAS  Google Scholar 

  3. Piętka-Ottlik, M., Wójtowicz-Młochowska, H., Kołodziejczyk, K., et al., New organoselenium compounds active against pathogenic bacteria, fungi and viruses, Chem. Pharm. Bull., 2008, vol. 56, no. 10, pp. 1423—1427. https://doi.org/10.1248/cpb.56.1423

    Article  PubMed  Google Scholar 

  4. Henderson, R., Rothgery, E.F., and Schnieder, H.A., US Patent 4496559, 1985.

  5. Mániková, D., Vlasáková, D., Loduhová, J., et al., Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae, Mutagenesis, 2009, vol. 25, no. 2, pp. 155—162. https://doi.org/10.1093/mutage/gep056

    Article  CAS  PubMed  Google Scholar 

  6. Wu, Z.L., Yin, X.B., and Lin, Z.Q., Inhibitory effect of selenium against Penicillium expansum and its possible mechanisms of action, Curr. Microbiol., 2014, vol. 69, no. 2, pp. 192—201. https://doi.org/10.1007/s00284-014-0573-0

    Article  CAS  PubMed  Google Scholar 

  7. Koltovaya, N.A., Nikulushkina, Yu.V., Kadyshevskaya, E.Yu., et al., Interaction between checkpoint genes RAD9, RAD17, RAD24, RAD53, and genes SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation, Russ. J. Genet., 2008, vol. 44, no. 8, pp. 909—918. https://doi.org/10.1134/S1022795408080048

    Article  CAS  Google Scholar 

  8. De Backer, M.D., Ilyina, T., Ma, X.J., et al., Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob. Agents Chemother., 2001, vol. 45, no. 6, pp. 1660—1670. https://doi.org/10.1128/AAC.45.6.1660-1670.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, T.T., Lee, R.E.B., Barker, K.S., et al., Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans, Antimicrob. Agents Chemother., 2005, vol. 49, pp. 2226—2236. https://doi.org/10.1128/AAC.49.6.2226-2236.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer, V., Damveld, R.A., Arentshorst, M., et al., Survival in the presence of antifungals: genome-wide expression profiling of Aspergillus niger in response to sublethal concentrations of caspofungin and fenpropimorph, J. Biol. Chem., 2007, vol. 282, pp. 32935—32948. https://doi.org/10.1074/jbc.M705856200

    Article  CAS  PubMed  Google Scholar 

  11. Mautner, H., Chu, Sh., and Lee, C.M., Studies of 2-selenopyridine and related compounds, J. Org. Chem., 1962, vol. 27, pp. 3671—3673. https://doi.org/10.1021/jo01057a065

    Article  CAS  Google Scholar 

  12. Terabayashi, Y., Sano, M., Yamane, N., et al., Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae, Fungal Genet. Biol., 2010, vol. 47, no. 12, pp. 953—961. https://doi.org/10.1016/j.fgb.2010.08.014

    Article  CAS  PubMed  Google Scholar 

  13. Kubodera, T., Nobuo, Y., and Akira, N., Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation, Biosci., Biotechnol., Biochem., 2000, vol. 64, no. 7, pp. 1416−1421. https://doi.org/10.1271/bbb.64.1416

    Article  CAS  Google Scholar 

  14. Li, Y. and Shellhorn, H.E., Rapid kinetic microassay for catalase activity, J. BiomolTech., 2007, vol. 18, no. 4, pp. 185−187.

    Google Scholar 

  15. Flurkey, W.H., Ratcliff, B., Lopez, L., et al., Differentiation of fungal tyrosinases and laccases using selective inhibitors and substrates, Enzym. Browning Its Prev., 1995, vol. 6, pp. 81−89. https://doi.org/10.1021/bk-1995-0600.ch006

    Article  CAS  Google Scholar 

  16. Nagaraja, P., Shivakumar, A., and Kumar, S.A., Development and evaluation of kinetic spectrophotometric assays for horseradish peroxidase by catalytic coupling of paraphenylenediamine and mequinol, AnalSci., 2009, vol. 25, no. 10, pp. 1243−1248. https://doi.org/10.2116/analsci.25.1243

    Article  CAS  Google Scholar 

  17. Data for Biochemical Research, Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Eds., New York: Oxford Univ. Press, 1986, 3rd ed. doi 10.1271/bbb.64.1416

    Google Scholar 

  18. Kobzar, A.I., Prikladnaya matematicheskaya statistika (Applied Mathematical Statistics), Moscow: Fizmatlit, 2006.

  19. Zalepkina, S.A., Artem’eva, M.M., Bezrukov, M.E., et al., The use of selenium-containing heterocyclic compounds for protecting paints and varnishes from microbiological damage, Ekol. Prom-st. Ross., 2018, vol. 1, pp. 56—61. https://doi.org/10.18412/1816-0395-2018-1-56-61

    Article  Google Scholar 

  20. Herrero Perpiñán, E. and Wellinger, R.E., Yeast as a model system to study metabolic impact of selenium compounds, Microb. Cell, 2015, vol. 2, no. 5, pp. 139—149. https://doi.org/10.15698/mic2015.05.200

    Article  CAS  Google Scholar 

  21. Bockhorn, J., Balar, B., He, D., et al., Genome-wide screen of Saccharomyces cerevisiae null allele strains identifies genes involved in selenomethionine resistance, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 46, pp. 17682—17687. https://doi.org/10.1073/pnas.0805642105

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rao, Y., McCooeye, M., Windust, A., et al., Mapping of selenium metabolic pathway in yeast by liquid chromatography-orbitrap mass spectrometry, Anal. Chem., 2010, vol. 82, no. 19, pp. 8121—8130. https://doi.org/10.1021/ac1011798

    Article  CAS  PubMed  Google Scholar 

  23. Kim, Y.H., Lee, H.S., Kwon, H.J., et al., Effects of different selenium levels on growth and regulation of laccase and versatile peroxidase in white-rot fungus, Pleurotus eryngii, World J Microbiol Biotechnol., 2014, vol. 30, no. 7, pp. 2101—2109. https://doi.org/10.1007/s11274-014-1650-z

    Article  CAS  PubMed  Google Scholar 

  24. Nunes, R.G.F.L., Luz, J.M.R., Fantuzzi, E., et al., Mycelial growth of Pleurotus spp. in Se-enriched culture media, Adv. Microbiol., 2013, vol. 3, pp. 31—36. https://doi.org/10.4236/aim.2013.38A003

    Article  CAS  Google Scholar 

  25. Ilyin, D.Yu., Ilyina, G.V., and Morozova, M.I., The perspectives of selenium compounds’ use in the conservation of collection cultures of xylotrophic basidiomycetes. Izv. Saratov Univ. Nov. Ser. Ser. Khim. Biol. Ecol., 2012, vol. 12, no. 1, pp. 56—60.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. K. Gomi and the staff of the Bioindustrial Genomics Department of Tohoku University for providing the opportunities to conduct experiments and for consultations regarding these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Smirnov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalepkina, S.A., Smirnov, V.F., Borisov, A.V. et al. Genomic Profiling of the Response of Aspergillus oryzae to the Treatment with Bis(2-Pyridine-1-Oxide) Diselenide. Russ J Genet 55, 301–308 (2019). https://doi.org/10.1134/S1022795419030177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419030177

Keywords:

Navigation