Abstract
We implemented genome-wide expression profiling to identify the mechanisms of toxicity of an organoselenium compound bis(2-pyridine-1-oxide) diselenide to the fungus А. oryzae RIB40. We uncovered changes in the expression levels in 72 genes. In particular, we observed a downregulation in the levels of several copper ion transmembrane transporter genes. In turn, we found a significant upregulation in the genes encoding oxidoreductases. The latter results are supported by biochemical experiments that revealed an increase in oxidoreductase activity in response to bis(2-pyridine-1-oxide) diselenide treatment. The results of a large-scale microarray analysis of the А. oryzae RIB 40 were confirmed by real-time quantitative PCR.
This is a preview of subscription content,
to check access.

REFERENCES
Bhowmick, D. and Mugesh, G., Enzyme mimetic chemistry of organoselenium compounds, in Patai’s Chemistry of Functional Groups, Chichester, UK: Wiley, 2013. pp. 1175—1235. https://doi.org/10.1002/9780470682531.pat0726
Ninomiya, M., Garud, D.R., and Koketsu, M., Biologically significant selenium- containing heterocycles, Coord. Chem. Rev., 2011, vol. 255, pp. 2968—2990. https://doi.org/10.1016/j.ccr.2011.07.009
Piętka-Ottlik, M., Wójtowicz-Młochowska, H., Kołodziejczyk, K., et al., New organoselenium compounds active against pathogenic bacteria, fungi and viruses, Chem. Pharm. Bull., 2008, vol. 56, no. 10, pp. 1423—1427. https://doi.org/10.1248/cpb.56.1423
Henderson, R., Rothgery, E.F., and Schnieder, H.A., US Patent 4496559, 1985.
Mániková, D., Vlasáková, D., Loduhová, J., et al., Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae, Mutagenesis, 2009, vol. 25, no. 2, pp. 155—162. https://doi.org/10.1093/mutage/gep056
Wu, Z.L., Yin, X.B., and Lin, Z.Q., Inhibitory effect of selenium against Penicillium expansum and its possible mechanisms of action, Curr. Microbiol., 2014, vol. 69, no. 2, pp. 192—201. https://doi.org/10.1007/s00284-014-0573-0
Koltovaya, N.A., Nikulushkina, Yu.V., Kadyshevskaya, E.Yu., et al., Interaction between checkpoint genes RAD9, RAD17, RAD24, RAD53, and genes SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation, Russ. J. Genet., 2008, vol. 44, no. 8, pp. 909—918. https://doi.org/10.1134/S1022795408080048
De Backer, M.D., Ilyina, T., Ma, X.J., et al., Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob. Agents Chemother., 2001, vol. 45, no. 6, pp. 1660—1670. https://doi.org/10.1128/AAC.45.6.1660-1670.2001
Liu, T.T., Lee, R.E.B., Barker, K.S., et al., Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans, Antimicrob. Agents Chemother., 2005, vol. 49, pp. 2226—2236. https://doi.org/10.1128/AAC.49.6.2226-2236.2005
Meyer, V., Damveld, R.A., Arentshorst, M., et al., Survival in the presence of antifungals: genome-wide expression profiling of Aspergillus niger in response to sublethal concentrations of caspofungin and fenpropimorph, J. Biol. Chem., 2007, vol. 282, pp. 32935—32948. https://doi.org/10.1074/jbc.M705856200
Mautner, H., Chu, Sh., and Lee, C.M., Studies of 2-selenopyridine and related compounds, J. Org. Chem., 1962, vol. 27, pp. 3671—3673. https://doi.org/10.1021/jo01057a065
Terabayashi, Y., Sano, M., Yamane, N., et al., Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae, Fungal Genet. Biol., 2010, vol. 47, no. 12, pp. 953—961. https://doi.org/10.1016/j.fgb.2010.08.014
Kubodera, T., Nobuo, Y., and Akira, N., Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation, Biosci., Biotechnol., Biochem., 2000, vol. 64, no. 7, pp. 1416−1421. https://doi.org/10.1271/bbb.64.1416
Li, Y. and Shellhorn, H.E., Rapid kinetic microassay for catalase activity, J. BiomolTech., 2007, vol. 18, no. 4, pp. 185−187.
Flurkey, W.H., Ratcliff, B., Lopez, L., et al., Differentiation of fungal tyrosinases and laccases using selective inhibitors and substrates, Enzym. Browning Its Prev., 1995, vol. 6, pp. 81−89. https://doi.org/10.1021/bk-1995-0600.ch006
Nagaraja, P., Shivakumar, A., and Kumar, S.A., Development and evaluation of kinetic spectrophotometric assays for horseradish peroxidase by catalytic coupling of paraphenylenediamine and mequinol, AnalSci., 2009, vol. 25, no. 10, pp. 1243−1248. https://doi.org/10.2116/analsci.25.1243
Data for Biochemical Research, Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Eds., New York: Oxford Univ. Press, 1986, 3rd ed. doi 10.1271/bbb.64.1416
Kobzar, A.I., Prikladnaya matematicheskaya statistika (Applied Mathematical Statistics), Moscow: Fizmatlit, 2006.
Zalepkina, S.A., Artem’eva, M.M., Bezrukov, M.E., et al., The use of selenium-containing heterocyclic compounds for protecting paints and varnishes from microbiological damage, Ekol. Prom-st. Ross., 2018, vol. 1, pp. 56—61. https://doi.org/10.18412/1816-0395-2018-1-56-61
Herrero Perpiñán, E. and Wellinger, R.E., Yeast as a model system to study metabolic impact of selenium compounds, Microb. Cell, 2015, vol. 2, no. 5, pp. 139—149. https://doi.org/10.15698/mic2015.05.200
Bockhorn, J., Balar, B., He, D., et al., Genome-wide screen of Saccharomyces cerevisiae null allele strains identifies genes involved in selenomethionine resistance, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 46, pp. 17682—17687. https://doi.org/10.1073/pnas.0805642105
Rao, Y., McCooeye, M., Windust, A., et al., Mapping of selenium metabolic pathway in yeast by liquid chromatography-orbitrap mass spectrometry, Anal. Chem., 2010, vol. 82, no. 19, pp. 8121—8130. https://doi.org/10.1021/ac1011798
Kim, Y.H., Lee, H.S., Kwon, H.J., et al., Effects of different selenium levels on growth and regulation of laccase and versatile peroxidase in white-rot fungus, Pleurotus eryngii, World J Microbiol Biotechnol., 2014, vol. 30, no. 7, pp. 2101—2109. https://doi.org/10.1007/s11274-014-1650-z
Nunes, R.G.F.L., Luz, J.M.R., Fantuzzi, E., et al., Mycelial growth of Pleurotus spp. in Se-enriched culture media, Adv. Microbiol., 2013, vol. 3, pp. 31—36. https://doi.org/10.4236/aim.2013.38A003
Ilyin, D.Yu., Ilyina, G.V., and Morozova, M.I., The perspectives of selenium compounds’ use in the conservation of collection cultures of xylotrophic basidiomycetes. Izv. Saratov Univ. Nov. Ser. Ser. Khim. Biol. Ecol., 2012, vol. 12, no. 1, pp. 56—60.
ACKNOWLEDGMENTS
We are grateful to Prof. K. Gomi and the staff of the Bioindustrial Genomics Department of Tohoku University for providing the opportunities to conduct experiments and for consultations regarding these studies.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.
Additional information
Translated by I. Grishina
Rights and permissions
About this article
Cite this article
Zalepkina, S.A., Smirnov, V.F., Borisov, A.V. et al. Genomic Profiling of the Response of Aspergillus oryzae to the Treatment with Bis(2-Pyridine-1-Oxide) Diselenide. Russ J Genet 55, 301–308 (2019). https://doi.org/10.1134/S1022795419030177
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1022795419030177