Skip to main content
Log in

Bioinformatic Analysis of the Sciatic Nerve Transcriptomes of Mice after 30-Day Spaceflight on Board the Bion-M1 Biosatellite

  • MATHEMATICAL MODELS AND METHODS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Comparative bioinformatic analysis of sciatic nerve transcriptomes of C57BL/6J mice was carried out. Animals were divided into three groups: Flight, 30-day spaceflight; Recovery, 30-day spaceflight with subsequent 7-day readaptation; and Control. A significant pool of genes with an absolute difference in expression of more than 32 times compared to the control group was revealed in mice after the 30-day spaceflight (Flight and Recovery groups). Comparative analysis of the Flight and Recovery groups of murine transcriptomes did not reveal any significant differences in gene expression. In animals after spaceflight on board the biosatellite, using the KEGG database (Kyoto Encyclopedia of Genes and Genomes), we identified genes related to the state of metabolic and signaling pathways involved in actin cytoskeleton regulation, regulation of potential-dependent calcium, sodium, and potassium channels, and myelination of nerve fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Shenkman, B.S., From slow to fast: hypogravity-induced remodeling of muscle fiber myosin phenotype, Acta Nat., 20168, no. 4, pp. 47—59.

  2. Grigoriev, A.I., Koslovskaya, I.B., and Shenkman, B.S., Role of support afferentation in organization of the tonic muscle system, Fiziol. Zh. im. I.M. Sechenova, 2004, vol. 90, no. 5, pp. 508—521.

    Google Scholar 

  3. Delbono, O., Neural control of aging skeletal muscle, Aging Cell, 2003, vol. 2, no. 1, pp. 21—29.

    Article  CAS  PubMed  Google Scholar 

  4. Sakuma, K. and Yamaguchi, A., The recent understanding of the neurotrophin’s role in skeletal muscle adaptation, J. Biomed. Biotechnol., 2011, vol. 2011, pp. 1—12. https://doi.org/10.1155/2011/201696

    Article  CAS  Google Scholar 

  5. Chevrel, G., Hohlfeld, R., and Sendtner, M., The role of neurotrophins in muscle under physiological and pathological conditions, Muscle Nerve, 2006, vol. 33, no. 4, pp. 462—476. https://doi.org/10.1002/mus.20444

    Article  CAS  PubMed  Google Scholar 

  6. Baguma-Nibasheka, M., Fracassi, A., Costain, W., et al., Role of skeletal muscle in motor neuron development, Histol. Histopathol., 2016, vol. 31, no. 7, pp. 699—719. https://doi.org/10.14670/HH-11-742

    Article  CAS  PubMed  Google Scholar 

  7. Spaulding, E.L. and Burgess, R.W., Accumulating evidence for axonal translation in neuronal homeostasis, Front. Neurosci., 2017, vol. 11, pp. 312—319. https://doi.org/10.3389/fnins.2017.00312

    Article  PubMed  PubMed Central  Google Scholar 

  8. Costa, C.J. and Willis, D.E., To the end of the line: axonal mRNA transport and local translation in health and neurodegenerative disease, Dev. Neurobiol., 2017, vol. 78, no. 3, pp. 209—220. https://doi.org/10.1002/dneu.22555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Islamov, R.R., Gusev, O.A., Tanabe, A., et al., Full-genome study of gene expression in lumbar spinal cord of mice after 30-day space flight on Bion-M1 biosatellite, Acta Astronaut., 2016, vol. 122, pp. 231—236. https://doi.org/10.1016/j.actaastro.2016.01.026

    Article  CAS  Google Scholar 

  10. Andreev-Andrievskiy, A., Popova, A., Boyle, R., et al., Mice in Bion-M 1 space mission: training and selection, PLoS One, 2014, vol. 9, no. 8. E104830. https://doi.org/10.1371/journal.pone.0104830

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aziz, R., Verma, C.K., and Srivastava, N., Dimension reduction methods for microarray data: a review, AIMS Bioeng., 2017, no. 4, pp. 179—197. https://doi.org/10.3934/bioeng.2017.2.179

  12. Saeys, Y., Inza, I., and Larranaga, P., A review of feature selection techniques in bioinformatics, Bioinformatics, 2007, vol. 23, no. 19, pp. 2507—2517. https://doi.org/10.1093/bioinformatics/btm344

    Article  CAS  PubMed  Google Scholar 

  13. Luo, W., Friedman, M., Shedden, K., et al., GAGE: Generally Applicable Gene Set Enrichment for Pathways Analysis, BMC Bioinf., 2009, vol. 10, no. 1, pp. 161—178. https://doi.org/10.1186/1471-2105-10-161

    Article  CAS  Google Scholar 

  14. Bradke, F. and Dotti, C.G., Neuronal polarity: vectorial cytoplasmic flow precedes axon formation, Neuron, 1997, vol. 19, no. 6, pp. 1175—1186.

    Article  CAS  PubMed  Google Scholar 

  15. Terenzio, M., Schiavo, G., and Fainzilber, M., Compartmentalized signaling in neurons: from cell biology to neuroscience, Neuron, 2017, vol. 96, no. 3, pp. 667—679. https://doi.org/10.1016/j.neuron.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  16. Piper, M. and Holt, C., RNA translation in axons, Annu. Rev. Cell Dev. Biol., 2004, vol. 20, no. 1, pp. 505—523. https://doi.org/10.1146/annurev.cellbio.20.010403.111746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alvarez, J., Giuditta, A., and Koenig, E., Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype: with a critique of slow transport theory, Prog. Neurobiol., 2000, vol. 62, no. 1, pp. 1—62. https://doi.org/10.1016/S0301-0082(99)00062-3

    Article  CAS  PubMed  Google Scholar 

  18. Glock, C., Heumüller, M., Schuman, E.M., mRNA transport and local translation in neurons, Curr. Opin. Neurobiol., 2017, vol. 45, pp. 169—177. https://doi.org/10.1016/j.conb.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  19. Lee, B.H., Bae, S.W., Shim, J.J., et al., Imaging single-mRNA localization and translation in live neurons, Mol. Cells, 2016, vol. 39, no. 12, pp. 841—846. https://doi.org/10.14348/molcells.2016.0277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Driesche, S. and Martin, K., New frontiers in RNA transport and local translation in neurons, Dev. Neurobiol., 2018, vol. 78, no. 13, pp. 331—339. https://doi.org/10.1002/dneu.22574

    Article  CAS  PubMed  Google Scholar 

  21. Kuznetsov, M.S., Rezvyakov, P.N., Lisyukov, A.N., et al., Transcriptomic profile of the mice sciatic nerve after 30-day space flight on the Bion-M1 biosatellite and subsequent 7-day readaptation on Earth, Aviakosm. Ekol. Med., 2017, vol. 51, no. 7, pp. 85—87. https://doi.org/10.21687/0233-528X-2017-51-7-85-87

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank O.V. Tyapkina and K.A. Petrov for assistance in experiments.

This study was supported by the Russian Foundation for Basic Research grant no. 17-04-00385, the fundamental research program of the Presidium of the Russian Academy of Sciences “Basic Research for the Development of Biomedical Technologies,” and the subsidy allocated within the framework of state support of the Kazan (Volga Region) Federal University in order to increase its competitiveness among the world’s leading scientific and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kuznetsov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by K. Lazarev

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, M.S., Rezvyakov, P.N., Lisyukov, A.N. et al. Bioinformatic Analysis of the Sciatic Nerve Transcriptomes of Mice after 30-Day Spaceflight on Board the Bion-M1 Biosatellite. Russ J Genet 55, 388–392 (2019). https://doi.org/10.1134/S1022795419030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419030104

Keywords:

Navigation