Skip to main content
Log in

Comparative Genomic Analysis of the Virulence Plasmid from Salmonella enterica Subspecies enterica Serovar Enteritidis

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Some serovars of Salmonella enterica subspecies enterica contain serovar-specific virulence plasmids. The availability of complete nucleotide sequences of S. Enteritidis virulence plasmid (pSEV) made it possible to trace its evolutionary changes. We studied the virulence plasmids of S. Enteritidis from different strains to reveal the evolution of pSEV and determine the ancestral plasmid and its exact size. Comparison of all available sequences of S. Enteritidis virulence plasmids showed that they were conservative and limited in size. These sizes ranged from 59 336 to 59 374 bp, and more than half of the plasmids had a size of 59 372 bp. The plasmid gene composition is conserved and consists of 81 open reading frames with small pseudogenization of plasmids, the sizes of which differed from 59 372 bp. It was suggested that the prototype of S. Enteritidis pSEV virulence plasmid was a plasmid from the SEJ-like ancestral strain with a size of 59 372 bp and the same nucleotide and gene composition as in S. Enteritidis strain SEJ. The sequence of this plasmid can be used as a reference for all future studies on the S. Enteritidis virulence plasmid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Hendriksen, R.S., Vierira, A.R., Karlsmose, S., et al., Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007, Foodborne Pathog. Dis., 2011, vol. 8, no. 8, pp. 887—900. https://doi.org/10.1089/fpd.2010.0787

    Article  PubMed  Google Scholar 

  2. Popoff, M.Y., Miras, I., Coynault, C., et al., Molecular relationships between virulence plasmids of Salmonella serotypes typhimurium and dublin and large plasmids of other Salmonella serotypes, Ann. Microbiol. (Paris), 1984, vol. 135A, no. 3, pp. 389—398.

    CAS  Google Scholar 

  3. Gulig, P.A., Danbara, H., Guiney, D.G., et al., Molecular analysis of spv virulence genes of the Salmonella virulence plasmids, Mol. Microbiol., 1993, vol. 7, no. 6, pp. 825—830.

    Article  CAS  PubMed  Google Scholar 

  4. Chu, C., Hong, S.F., Tsai, C., et al., Comparative physical and genetic maps of the virulence plasmids of Salmonella enterica serovars typhimurium, enteritidis, choleraesuis, and dublin, Infect. Immun., 1999, vol. 67, no. 5, pp. 2611—2614.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rotger, R. and Casadesús, J., The virulence plasmids of Salmonella, Int. Microbiol., 1999, vol. 2, no. 3, pp. 177—184.

    CAS  PubMed  Google Scholar 

  6. Sengupta, M. and Austin, S., Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria, Infect. Immunol., 2011, vol. 79, no. 7, pp. 2502—2509. https://doi.org/10.1128/IAI.00127-11

    Article  CAS  Google Scholar 

  7. Chu, C., Feng, Y., Chien, A.C., et al., Evolution of genes on the Salmonella virulence plasmid phylogeny revealed from sequencing of the virulence plasmids of S. enterica serotype Dublin and comparative analysis, Genomics, 2008, vol. 92, no. 5, pp. 339—343. https://doi.org/10.1016/j.ygeno.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  8. Carattoli, A., Zankari, E., García-Fernández, A., et al., In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing, Antimicrob. Agents Chemother., 2014, vol. 58, no. 7, pp. 3895—3903. https://doi.org/10.1128/AAC.02412-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guerra, B., Soto, S., Helmuth, R., et al., Characterization of a self-transferable plasmid from Salmonella enterica serotype typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes, Antimicrob. Agents Chemother., 2002, vol. 46, no. 9, pp. 2977—2981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodríguez, I., Guerra, B., Mendoza, M.C., et al., pUO-SeVR1 is an emergent virulence-resistance complex plasmid of Salmonella enterica serovar Enteritidis, J. Antimicrob. Chemother., 2011, vol. 66, no. 1, pp. 218—220. https://doi.org/10.1093/jac/dkq386

    Article  CAS  PubMed  Google Scholar 

  11. García, V., García, P., Rodríguez, I., et al., The role of IS26 in evolution of a derivative of the virulence plasmid of Salmonella enterica serovar Enteritidis which confers multiple drug resistance, Infect. Genet. Evol., 2016, vol. 45, pp. 246—249. https://doi.org/10.1016/j.meegid.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  12. Rychlik, I., Gregorova, D., and Hradecka, H., Distribution and function of plasmids in Salmonella enterica, Vet. Microbiol., 2006, vol. 112, no. 1, pp. 1—10.

    Article  CAS  PubMed  Google Scholar 

  13. Schnoes, A.M., Brown, S.D., Dodevski, I., et al., Annotation error in public databases: misannotation of molecular function in enzyme superfamilies, PLoS Comput. Biol., 2009, vol. 5, no. 12. e1000605. https://doi.org/10.1371/journal.pcbi.1000605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng, Y., Liu, J., Li, Y.G., et al., Inheritance of the Salmonella virulence plasmids: mostly vertical and rarely horizontal, Infect. Genet. Evol., 2012, vol. 12, no. 5, pp. 1058—1063. https://doi.org/10.1016/j.meegid.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  15. Bishop-Lilly, K.A., Frey, K.G., Daligault, H.E., et al., Complete genome sequence of Salmonella enterica subsp. enterica serovar Enteritidis Strain SEJ, Genome Announc., 2014, vol. 2, no. 5. e01084–14. https://doi.org/10.1128/genomeA.01084-14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ogunremi, D., Devenish, J., Amoako, K., et al., High resolution assembly and characterization of genomes of Canadian isolates of Salmonella enteritidis, BMC Genomics, 2014, vol. 15, p. 713. https://doi.org/10.1186/1471-2164-15-713

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rehman, M.A., Ziebell, K., Nash, J.H., et al., Complete genome sequences of 16 Canadian strains of Salmonella enterica subsp. enterica serovar Enteritidis, Genome Announc., 2014, vol. 2, no. 2. e00330—14. https://doi.org/10.1128/genomeA.00330-14

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feasey, N.A., Hadfield, J., Keddy, K.H., et al., Distinct Salmonella enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings, Nat. Genet., 2016, vol. 48, no. 10, pp. 1211—1217. https://doi.org/10.1038/ng.3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, S., Yin, Y., Jones, M.B., et al., Salmonella serotype determination utilizing high-throughput genome sequencing data, J. Clin. Microbiol., 2015, vol. 53, no. 5, pp. 1685—1692. https://doi.org/10.1128/JCM.00323-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Besemer, J., Lomsadze, A., and Borodovsky, M., GeneMarkS: a self-training method for prediction of gene starts in microbial genomes: implications for finding sequence motifs in regulatory regions, Nucleic Acids Res., 2001, vol. 29, no. 12, pp. 2607—2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hyatt, D., Chen, G.L., Locascio, P.F., et al., Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinf., 2010, vol. 11, p. 119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  22. Bocs, S., Cruveiller, S., Vallenet, D., et al., AMIGene: Annotation of MIcrobial Genes, Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3723—3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aziz, R.K., Bartels, D., Best, A.A., et al., The RAST Server: rapid annotations using subsystems technology, BMC Genomics, 2008, vol. 9, p. 75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ederveen, T.H., Overmars, L., and van Hijum, S.A., Reduce manual curation by combining gene predictions from multiple annotation engines, a case study of start codon prediction, PLoS One, 2013, vol. 8, no. 5. e63523. https://doi.org/10.1371/journal.pone.0063523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wall, M.E., Raghavan, S., Cohn, J.D., et al., Genome majority vote improves gene predictions, PLoS Comput. Biol., 2011, vol. 7, no. 11. e1002284. https://doi.org/10.1371/journal.pcbi.1002284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siguier, P., Perochon, J., Lestrade, L., et al., ISfinder: the reference centre for bacterial insertion sequences, Nucleic Acids Res., 2006, vol. 34, pp. D32—D36. https://doi.org/10.1093/nar/gkj014

    Article  CAS  PubMed  Google Scholar 

  27. Zankari, E., Hasman, H., Cosentino, S., et al., Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother., 2012, vol. 67, no. 11, pp. 2640—2644. https://doi.org/10.1093/jac/dks261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Darling, A.C., Mau, B., Blattner, F.R., et al., Mauve: multiple alignment of conserved genomic sequence with rearrangements, Genome Res., 2004, vol. 14, no. 7, pp. 1394—1403. https://doi.org/10.1101/gr.2289704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lassmann, T., Frings, O., and Sonnhammer, E.L., Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features, Nucleic Acids Res., 2009, vol. 37, no. 3, pp. 858—865. https://doi.org/10.1093/nar/gkn1006

    Article  CAS  PubMed  Google Scholar 

  30. Altschul, S.F., Gish, W., Miller, W., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, no. 3, pp. 403—410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  31. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725—2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Russell, D.A., Bowman, C.A., and Hatfull, G.F., Genome sequence of Salmonella enterica subsp. enterica strain Durban, Genome Announc., 2014, vol. 2, no. 3. e00399–14. https://doi.org/10.1128/genomeA.00399-14

    Article  PubMed  PubMed Central  Google Scholar 

  33. Langridge, G.C., Fookes, M., Connor, T.R., et al., Patterns of genome evolution that have accompanied host adaptation in Salmonella, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 3, pp. 863—868. https://doi.org/10.1073/pnas.1416707112

    Article  CAS  PubMed  Google Scholar 

  34. Li, Q., Wang, X., Yin, K., et al., Genetic analysis and CRISPR typing of Salmonella enterica serovar Enteritidis from different sources revealed potential transmission from poultry and pig to human, Int. J. Food Microbiol., 2018, vol. 266, pp. 119—125. https://doi.org/10.1016/j.ijfoodmicro.2017.11.025

    Article  CAS  PubMed  Google Scholar 

  35. Grépinet, O., Rossignol, A., Loux, V., et al., Genome sequence of the invasive Salmonella enterica subsp. enterica serotype enteritidis strain LA5, J. Bacteriol., 2012, vol. 194, no. 9, pp. 2387—2388. https://doi.org/10.1128/JB.00256-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Allard, M.W., Luo, Y., Strain, E., et al., On the evolutionary history, population genetics and diversity among isolates of Salmonella enteritidis PFGE pattern JEGX01.0004, PLoS One, 2013, vol. 8, no. 1. e55254. https://doi.org/10.1371/journal.pone.0055254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rakov.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakov, A.V., Shubin, F.N. Comparative Genomic Analysis of the Virulence Plasmid from Salmonella enterica Subspecies enterica Serovar Enteritidis. Russ J Genet 55, 144–153 (2019). https://doi.org/10.1134/S102279541902011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541902011X

Keywords:

Navigation