Skip to main content
Log in

HD-Zip Genes and Their Role in Plant Adaptation to Environmental Factors

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This review presents characteristics of the HD-Zip family of homeobox-containing genes unique to plants, and their involvement in molecular mechanisms of resistance to certain adverse environmental factors (such as drought, deficiency of light, and pathogens) is considered. The importance of the HD-Zip genes in modulating and combining the signals from different hormone-dependent genetic cascades controlling the adaptation of plants to various external factors is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Garber, R.L., Kuroiwa, A., Gehring, W.J., et al., Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila, EMBO J., 1983, vol. 2, pp. 2027—2036. https://doi.org/10.1002/j.1460-2075.1983.tb01696.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moens, C.B. and Selleri, L., Hox cofactors in vertebrate development, Dev. Biol., 2006, vol. 291, pp. 193—206. https://doi.org/10.1016/j.ydbio.2005.10.032

    Article  CAS  PubMed  Google Scholar 

  3. Vollbrecht, E., Veit, B., Sinha, N., and Hake, S., The developmental gene Knotted-1 is a member of a maize homeobox gene family, Nature, 1991, vol. 350, pp. 241—243. https://doi.org/10.1038/350241a0

    Article  CAS  PubMed  Google Scholar 

  4. Bharathan, G., Janssen, B.-J., Kellogg, E.A., and Sinha, N., Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa?, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 13749—13753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sessa, G., Morelli, G., and Ruberti, I., The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities, EMBO J., 1993, vol. 12, pp. 3507—3517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schena, M. and Davis, R.W., HD-Zip protein members of Arabidopsis homeodomain protein superfamily, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, pp. 3894—3898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhong, R. and Ye, Z.-H., IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein, Plant Cell. 1999, vol. 11, pp. 2139—2152. https://doi.org/10.1105/tpc.11.11.2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McConnell, J.R., Emery, J., Eshed, Y., et al., Role of PHABULOSA and PHAVOLUTA in determining radial patterningin shoots, Nature, 2001, vol. 411, pp. 709—713. https://doi.org/10.1038/35079635

    Article  CAS  PubMed  Google Scholar 

  9. Ohashi-Ito, K. and Fukuda, H., HD-Zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation, Plant Cell Physiol., 2003, vol. 44, pp. 1350—1358. https://doi.org/10.1093/pcp/pcg164.

    Article  CAS  PubMed  Google Scholar 

  10. Rerie, W.G., Feldmann, K.A., and Marks, M.D., The glabra2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis, Genes Dev., 1994, vol. 8, pp. 1388—1399. https://doi.org/10.1101/gad.8.12.1388

    Article  CAS  PubMed  Google Scholar 

  11. Di Cristina, M., Sessa, G., Dolan, L., et al., The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development, Plant J., 1996, vol. 10, pp. 393—402. https://doi.org/10.1046/j.1365-313X.1996.10030393.x

    Article  CAS  PubMed  Google Scholar 

  12. Masucci, J., Rerie, W., Foreman, D., et al., The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana, Development, 1996, vol. 122, pp. 1253—1260.

    CAS  PubMed  Google Scholar 

  13. Ohashi, Y., Oka, A., Ruberti, I., et al., Ectopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation, Plant J., 2002, vol. 29, pp. 359—369. https://doi.org/10.1046/j.0960-7412.2001.01214.x

    Article  CAS  PubMed  Google Scholar 

  14. Abe, M., Katsumata, H., Komeda, Y., and Takahashi, T., Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis, Development, 2003, vol. 130, pp. 635—643. https://doi.org/10.1242/dev.00292

    Article  CAS  PubMed  Google Scholar 

  15. Chan, R.L., Gago, G.M., Palena, C.M., and Gonzalez, D.H., Homeoboxes in plant development, Biochim. Biophys. Acta, 1998, vol. 1442, pp. 1—19. https://doi.org/10.1016/S0167-4781(98)00119-5.

    Article  CAS  PubMed  Google Scholar 

  16. Aoyama, T., Dong, C., Wu, Y., et al., Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco, Plant Cell, 1995, vol. 7, pp. 1773—1785. https://doi.org/10.1105/tpc.7.11.1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanson, J., Johannesson, H., and Engstrom, P., Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZip gene ATHB13, Plant Mol. Biol., 2001, vol. 45, pp. 247—262.

    Article  CAS  PubMed  Google Scholar 

  18. Li, G., Yu, M., Fang, T., et al., Vernalization requirement duration in winter wheat is controlled by TaVRN-A1 at the protein level, Plant J., 2013, vol. 76, pp. 742—753. https://doi.org/10.1111/tpj.12326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brandt, R., Cabedo, M., Xie, Y., and Wenkel, S., Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment, J. Integr. Plant Biol., 2014, vol. 56, pp. 518—526. https://doi.org/10.1111/jipb.12185

    Article  CAS  PubMed  Google Scholar 

  20. Ariel, F.D., Manavella, P.A., Dezar, C.A., and Chan, R.L., The true story of the HD-Zip family, Trends Plant Sci., 2007, vol. 12, no. 9, pp. 419—426. https://doi.org/10.1016/j.tplants.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  21. Henriksson, E., Olsson, A.S.B., Johannesson, H., et al., Homeodomain leucine zipper class I genes in Arabidopsis: expression patterns and phylogenetic relationships, Plant Physiol., 2005, vol. 139, pp. 509—518. https://doi.org/10.1104/pp.105.063461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agalou, A., Purwantomo, S., Overnaes, E., et al., A genome-wide survey of HD-Zip genes in rice and analysis of drought responsive family members, Plant Mol. Biol., 2008, vol. 66, pp. 87—103. https://doi.org/10.1007/s11103-007-9255-7

    Article  CAS  PubMed  Google Scholar 

  23. Tron, A.E., Bertoncini, C.W., Chan, R.L., and Gonzalez, D.H., Redox regulation of plant homeodomain transcription factors, J. Biol. Chem., 2002, vol. 277, pp. 34800—34807. https://doi.org/10.1074/jbc.M203297200

    Article  CAS  PubMed  Google Scholar 

  24. Tron, A.E., Comelli, R.N., and Gonzalez, D.H., Structure of homeodomain-leucine zipper/DNA complexes studied using hydroxyl radical cleavage of DNA and methylation interference, Biochemistry, 2005, vol. 44, pp. 16796—16803. https://doi.org/10.1021/bi0513150

    Article  CAS  PubMed  Google Scholar 

  25. Palena, C.M., Tron, A.E., Bertoncinim, C.W., et al., Positively charged residues at the N-terminal arm of the homeodomain are required for efficient DNA binding by homeodomain-leucine zipper proteins, J. Mol. Biol., 2001, vol. 308, pp. 39—47. https://doi.org/10.1006/jmbi.2001.4563.

    Article  CAS  PubMed  Google Scholar 

  26. Tron, A.E., Welchen, E., and Gonzalez, D.H., Engineering the loop region of a homeodomain-leucine zipper protein promotes efficient binding to a monomeric DNA binding site, Biochemistry, 2004, vol. 43, pp. 15845—15851. https://doi.org/10.1021/bi048254a

    Article  CAS  PubMed  Google Scholar 

  27. Ponting, C.P. and Aravind, L., START: a lipid-binding domain in StAR, HD-ZIP and signaling proteins, Trends Biochem. Sci., 1999, vol. 24, pp. 130—132. https://doi.org/10.1016/S0968-0004(99)01362-6.

    Article  CAS  PubMed  Google Scholar 

  28. Schrick, K., Nguyen, D., Karlowski, W.M., and Mayer, K.F., START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors, Genome Biol., 2004, vol. 5, no. 6. R41. https://doi.org/10.1186/gb-2004-5-6-r41

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ohashi, Y., Oka, A., Rodrigues-Pousada, R., et al., Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation, Science, 2003, vol. 300, pp. 1427—1430. https://doi.org/10.1126/science.1083695

    Article  CAS  PubMed  Google Scholar 

  30. Kumar, R. and Thompson, E.B., Gene regulation by the glucocorticoid receptor: structure: function relationship, J. Steroid Biochem. Mol. Biol., 2005, vol. 94, pp. 383—394. https://doi.org/10.1016/j.jsbmb.2004.12.046.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, F., Zuo, K., Zhang, J., et al., An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development, J. Exp. Bot., 2010, vol. 61, pp. 3599—3613. https://doi.org/10.1093/jxb/erq173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mukherjee, K. and Bürglin, T.R., MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper III proteins, Plant Physiol., 2006, vol. 140, pp. 1142—1150. https://doi.org/10.1104/pp.105.073833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Skirycz, A. and Inzé, D., More from less: plant growth under limited water, Curr. Opin. Biotechnol., 2010, vol. 21, pp. 197—203. https://doi.org/10.1016/j.copbio.2010.03.002.

    Article  CAS  PubMed  Google Scholar 

  34. Shinozaki, K. and Yamaguchi-Shinozaki, K., Gene networks involved in drought stress response and tolerance, J. Exp. Bot., 2007, vol. 58, pp. 221—227. https://doi.org/10.1093/jxb/erl164

    Article  CAS  PubMed  Google Scholar 

  35. Manavella, P.A., Arce, A.L., Dezar, C.A., et al., Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor, Plant J., 2006, vol. 48, no. 1, pp. 125—137. https://doi.org/10.1111/j.1365-313X.2006.02865.x

    Article  CAS  PubMed  Google Scholar 

  36. Harris, J.C., Sornaraj, P., Taylor, M., et al., Molecular interactions of the γ-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit, Plant Mol. Biol., 2016, vol. 90, pp. 435—452. https://doi.org/10.1007/s11103-015-0427-6

    Article  CAS  PubMed  Google Scholar 

  37. Dezar, C.A., Gago, G.M., Gonzalez, D.H., and Chan, R.L., Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants, Transgenic Res., 2005, vol. 14, pp. 429—440.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, S.F. and Hoffman, N.E., Ethylene biosynthesis and its regulation in higher-plants, Annu. Rev. Plant Physiol. Mol. Biol., 1984, vol. 35, pp. 155—189.

    Article  CAS  Google Scholar 

  39. Chao, Q., Rothenberg, M., Solano, R., et al., Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins, Cell, 1997, vol. 89, pp. 1133—1144. https://doi.org/10.1016/S0092-8674(00)80300-1.

    Article  CAS  PubMed  Google Scholar 

  40. Sakamoto, A. and Murata, N., Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance, J. Exp. Bot., 2000, vol. 51, pp. 81—88.

    Article  CAS  PubMed  Google Scholar 

  41. Capell, T., Bassie, L., and Christou, P., Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 9909—9914. https://doi.org/10.1073/pnas.0306974101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu, H., Chen, X., Hong, Y.-Y., et al., Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density, Plant Cell, 2008, vol. 20, pp. 1134—1151. https://doi.org/10.1105/tpc.108.058263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, M., Chory, J., and Fankhauser, C., Light signal transduction in higher plants, Annu. Rev. Genet., 2004, vol. 38, pp. 87—117.

    Article  CAS  PubMed  Google Scholar 

  44. Salter, M.G., Franklin, K.A., and Whitelam, G.C., Gating of the rapid shade avoidance response by the circadian clock in plants, Nature, 2003, vol. 426, pp. 680—683. https://doi.org/10.1038/nature02174

    Article  CAS  PubMed  Google Scholar 

  45. Carabelli, M., Morelli, G., Whitelam, G., and Ruberti, I., Twilight zone and canopy shade induction of the ATHB-2 homeobox gene in green plants, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 3530—3535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sessa, G., Carabelli, M., Sassi, M., et al., A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis, Genes Dev., 2005, vol. 19, pp. 2811—2815. https://doi.org/10.1101/gad.364005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iglesias, M.J., Sellaro, R., Zurbriggen, M.D., et al., Multiple links between shade avoidance and auxin networks, J. Exp. Bot., 2017, vol. 69, pp. 213—218. https://doi.org/10.1093/jxb/erx295

    Article  CAS  Google Scholar 

  48. Chapman, E.J. and Estelle, M., Mechanism of auxin-regulated gene expression in plants, Annu. Rev. Genet., 2009, vol. 43, pp. 265—285. https://doi.org/10.1146/annurev-genet-102108-134148

    Article  CAS  PubMed  Google Scholar 

  49. Hornitschek, P., Lorrain, S., Zoete, V., et al., Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers, EMBO J., 2009, vol. 28, pp. 3893—3902. https://doi.org/10.1038/emboj.2009.306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lau, O.S. and Deng, X.W., The photomorphogenic repressors COP1 and DET1: 20 years later, Trends Plant Sci., 2012, vol. 17, pp. 584—593. https://doi.org/10.1016/j.tplants.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  51. Pacín, M., Semmoloni, M., Legris, M., et al., Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance, New Phytol., 2016, vol. 211, pp. 967—979. https://doi.org/10.1111/nph.13965

    Article  CAS  PubMed  Google Scholar 

  52. Ariel, F., Diet, A., Verdenaud, M., et al., Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1, Plant Cell, 2010, vol. 22, pp. 2171—2183. https://doi.org/10.1105/tpc.110.074823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, X., Chen, Z., Zhao, H., et al., Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments, PLoS One, 2014, vol. 9. e87156. https://doi.org/10.1371/journal.pone.0087156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jeffree, C.E., The fine structure of the plant cuticle, in Annual Plant Reviews, vol. 23: Biology of the Plant Cuticle, Oxford, UK: Blackwell, 2007, pp. 11—125.

  55. Wu, R., Li, S., He, S., et al., CFL1, aWW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis, Plant Cell, 2011, vol. 23, pp. 3392—3411. https://doi.org/10.1105/tpc.111.088625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Javelle, M., Vernoud, V., Depege-Fargeix, N., et al., Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor Outer Cell Layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis, Plant Physiol., 2010, vol. 154, pp. 273—286. https://doi.org/10.1104/pp.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. DeBono, A., Yeats, T.H., Rose, J.K.C., et al., Arabidopsis LTPG is a glycosyl phosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface, Plant Cell, 2009, vol. 21, pp. 1230—1238. https://doi.org/10.1105/tpc.108.064451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zottich, U., Cunha, M., Carvalho, A.O., et al., Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with alpha-amylase inhibitor properties, Biochim. Biophys. Acta, 2011, vol. 4, pp. 375—383. https://doi.org/10.1016/j.bbagen.2010.12.002

    Article  CAS  Google Scholar 

  59. Boutrot, F., Chantret, N., and Gautier, M.-F., Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining, BMC Genomics, 2008, vol. 9(86), pp. 1—19. https://doi.org/10.1186/1471-2164-9-86

    Article  CAS  Google Scholar 

  60. Molina, A. and Garcia-Olmedo, F., Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2, Plant J., 1997, vol. 12, pp. 669—675. https://doi.org/10.1046/j.1365-313X.1997.00605.x

    Article  CAS  PubMed  Google Scholar 

  61. Lee, S.B., Go, Y.S., Bae, H.J., et al., Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola, Plant Physiol., 2009, vol. 150, pp. 42—54. https://doi.org/10.1104/pp.109.137745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thomma, B.P., Cammue, B.P., and Thevissen, K., Plant defensins, Planta, 2002, vol. 216, no. 2, pp. 193—202. https://doi.org/10.1007/s00425-002-0902-6

    Article  CAS  PubMed  Google Scholar 

  63. Kovalchuk, N., Li, M., Wittek, F., et al., Defensin promoters as potential tools for engineering disease resistance in cereal grains, Plant Biotech. J., 2010, vol. 8, p. 47—64. https://doi.org/10.1111/j.1467-7652.2009.00465.x

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 14-14-00161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Shcherban.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherban, A.B. HD-Zip Genes and Their Role in Plant Adaptation to Environmental Factors. Russ J Genet 55, 1–9 (2019). https://doi.org/10.1134/S1022795419010125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419010125

Keywords:

Navigation