Russian Journal of Genetics

, Volume 55, Issue 1, pp 24–34 | Cite as

Transposable Elements in the Evolution of Gene Regulatory Networks

  • S. A. PirogovEmail author
  • O. G. Maksimenko
  • P. G. Georgiev


Over the past decade, there has been an active study of the interactions between the population of transposable elements (TEs) and the rest of the genome. Many regulatory sequences of TEs have been used for different genes regulation and genome organization. These regulatory sequences can be transcription factor binding sites, enhancers, and insulators. TEs may contain promoters that can be domesticated during substitution of original gene promoters or during de novo formation of long noncoding RNAs. In addition, there are many examples of domestication of TE-encoded proteins, for example, transposases, proteases, and Gag proteins. This review highlights the role of TEs in the evolution of gene regulatory networks and the principles determining it.


transposable elements regulation of gene expression genome evolution evolution of complexity exaptation 



  1. 1.
    Koonin, E.V., The Logic of Chance: The Nature and Origin of Biological Evolution, FT Press, 2011.Google Scholar
  2. 2.
    McShea, D.W., Functional complexity in organisms: parts as proxies, Biol. Philos., 2000, vol. 15, no. 5, pp. 641—668. CrossRefGoogle Scholar
  3. 3.
    Adami, C., What is complexity?, BioEssays, 2002, vol. 24, no. 12, pp. 1085—1094. CrossRefPubMedGoogle Scholar
  4. 4.
    Elliott, T.A. and Gregory, T.R., What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content, Philos. Trans. R. Soc., B, 2015, vol. 370, no. 1678, pp. 20140331.
  5. 5.
    Claverie, J.M., Gene number: what if there are only 30,000 human genes?, Science, 2001, vol. 291, no. 5507, pp. 1255—1257. CrossRefPubMedGoogle Scholar
  6. 6.
    Dunham, I., Kundaje, A., Aldred, S.F., et al., An integrated encyclopedia of DNA elements in the human genome, Nature, 2012, vol. 489, no. 7414, pp. 57—74. CrossRefGoogle Scholar
  7. 7.
    Carroll, S.B., Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution, Cell, 2008, vol. 134, no. 1, pp. 25—36. CrossRefPubMedGoogle Scholar
  8. 8.
    Lynch, V.J., A copy-and-paste gene regulatory network, Science, 2016, vol. 351, no. 6277, pp. 1029—1030. CrossRefPubMedGoogle Scholar
  9. 9.
    Sundaram, V., Cheng, Y., Ma, Z., et al., Widespread contribution of transposable elements to the innovation of gene regulatory networks, Genome Res., 2014, vol. 24, no. 12, pp. 1963—1976. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Doolittle, W.F., Is junk DNA bunk? A critique of ENCODE, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 14, pp. 5294—5300. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McShea, D.W. and Brandon, R.N., Biology’s First Law: The Tendency for Diversity and Complexity to Increase in Evolutionary Systems, Chicago: Univ. Chicago Press, 2010.CrossRefGoogle Scholar
  12. 12.
    Pigliucci, M., Is evolvability evolvable?, Nat. Rev. Genet., 2008, vol. 9, no. 1, pp. 75—82. CrossRefPubMedGoogle Scholar
  13. 13.
    Masel, J. and Trotter, M.V., Robustness and evolvability, Trends Genet., 2010, vol. 26, no. 9, pp. 406—414. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wagner, A., Robustness and Evolvability in Living Systems, Princeton Univ. Press, 2007.Google Scholar
  15. 15.
    Koonin, E.V., Splendor and misery of adaptation, or the importance of neutral null for understanding evolution, BMC Biol., 2016, vol. 14, p. 114. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fernández, A. and Lynch, M., Non-adaptive origins of interactome complexity, Nature, 2011, vol. 474, no. 7352, pp. 502—505. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lynch, M., The frailty of adaptive hypotheses for the origins of organismal complexity, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, suppl. 1, pp. 8597—8604. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wicker, T., Sabot, F., Hua-Van, A., et al., A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 2007, vol. 8, no. 12, pp. 973—982. CrossRefGoogle Scholar
  19. 19.
    Belshaw, R., Watson, J., Katzourakis, A., et al., Rate of recombinational deletion among human endogenous retroviruses, J. Virol., 2007, vol. 81, no. 17, pp. 9437—9442. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Feschotte, C. and Mouchès, C., Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon, Mol. Biol. Evol., 2000, vol. 17, no. 5, pp. 730—737. CrossRefPubMedGoogle Scholar
  21. 21.
    Schnable, P.S., Ware, D., Fulton, R.S., et al., The B73 maize genome: complexity, diversity, and dynamics, Science, 2009, vol. 326, no. 5956, pp. 1112—1115. CrossRefPubMedGoogle Scholar
  22. 22.
    Lander, E.S., Linton, L.M., Birren, B., et al., Initial sequencing and analysis of the human genome, Nature, 2001, vol. 409, no. 6822, pp. 860—921. CrossRefGoogle Scholar
  23. 23.
    de Koning, A.P.J., Gu, W., Castoe, T., et al., Repetitive elements may comprise over two-thirds of the human genome, PLoS Genet., 2011, vol. 7, no. 12, p. e1002384. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brosius, J., The contribution of RNAs and retroposition to evolutionary novelties, Genetica, 2003, vol. 118, nos. 2—3, pp. 99—115. CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang, Y., Romanish, M.T., and Mager, D.L., Distributions of transposable elements reveal hazardous zones in mammalian introns, PLoS Comput. Biol., 2011, vol. 7, no. 5. e1002046. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rogozin, I.B., Carmel, L., Csuros, M., and Koonin, E.V., Origin and evolution of spliceosomal introns, Biol. Direct., 2012, vol. 7, no. 1, p. 11. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Piégu, B., Bire, S., Arensburger, P., and Bigot, Y., A survey of transposable element classification systems—a call for a fundamental update to meet the challenge of their diversity and complexity, Mol. Phylogenet. Evol., 2015, vol. 86, pp. 90—109. CrossRefPubMedGoogle Scholar
  28. 28.
    Huff, J.T., Zilberman, D., and Roy, S.W., Mechanism for DNA transposons to generate introns on genomic scales, Nature, 2016, vol. 538, no. 7626, pp. 533—536. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Krull, M., Petrusma, M., Makalowski, W., et al., Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs), Genome Res., 2007, vol. 17, no. 8, pp. 1139—1145. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schmitz, J. and Brosius, J., Exonization of transposed elements: a challenge and opportunity for evolution, Biochimie, 2011, vol. 93, no. 11, pp. 1928—1934. CrossRefPubMedGoogle Scholar
  31. 31.
    Tang, W., Gunn, T.M., and McLaughlin, D., F et al. Secreted and membrane attractin result from alternative splicing of the human ATRN gene, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 11, pp. 6025—6030. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee, J.Y., Ji, Z., and Tian, B., Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3'-end of genes, Nucleic Acids Res., 2008, vol. 36, no. 17, pp. 5581—5590. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cowley, M., Oakey, R.J., Venables, P., et al., Transposable elements re-wire and fine-tune the transcriptome, PLoS Genet., 2013, vol. 9, no. 1. e1003234. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Huda, A., Bowen, N.J., Conley, A.B., and Jordan, I.K., Epigenetic regulation of transposable element derived human gene promoters, Gene, 2011, vol. 475, pp. 39—48. CrossRefPubMedGoogle Scholar
  35. 35.
    Jordan, I.K., Rogozin, I.B., Glazko, G.V., and Koonin, E.V., Origin of a substantial fraction of human regulatory sequences from transposable elements, Trends Genet., 2003, vol. 19, no. 2, pp. 68—72. CrossRefPubMedGoogle Scholar
  36. 36.
    Morgan, H.D., Sutherland, H.G., Martin, D.I., and Whitelaw, E., Epigenetic inheritance at the agouti locus in the mouse, Nat. Genet., 1999, vol. 23, no. 3, pp. 314—318. CrossRefPubMedGoogle Scholar
  37. 37.
    Faulkner, G.J., Kimura, Y., Daub, C.O., et al., The regulated retrotransposon transcriptome of mammalian cells, Nat. Genet., 2009, vol. 41, no. 5, pp. 563—571. CrossRefPubMedGoogle Scholar
  38. 38.
    Thompson, P.J., Macfarlan, T.S., and Lorincz, M.C., Long Terminal Repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire, Mol. Cell., 2016, vol. 62, no. 5, pp. 766—776. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Eickbush, T.H. and Malik, H.S., Origins and evolution of retrotransposons, in Mobile DNA II, Washington, DC: American Society for Microbiology, 2002, P. 1111—1144. Google Scholar
  40. 40.
    Katzourakis, A. and Gifford, R.J., Endogenous viral elements in animal genomes, PLoS Genet., 2010, vol. 6, no. 11. e1001191. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kramerov, D.A. and Vassetzky, N.S., Origin and evolution of SINEs in eukaryotic genomes, Heredity, 2011, vol. 107, no. 6, pp. 487—495. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tollis, M. and Boissinot, S., The evolutionary dynamics of transposable elements in eukaryote genomes, Genome Dyn., 2012, vol. 7, pp. 68—91. CrossRefPubMedGoogle Scholar
  43. 43.
    Lynch, M., The Origins of Genome Architecture, Sinauer Associates, 2007.Google Scholar
  44. 44.
    Lane, N. and Martin, W., The energetics of genome complexity, Nature, 2010, vol. 467, no. 7318, pp. 929—934. CrossRefPubMedGoogle Scholar
  45. 45.
    Le Rouzic, A., Boutin, T.S., and Capy, P., Long-term evolution of transposable elements, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 49, pp. 19375—19380. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hua-Van, A., Le Rouzic, A., Boutin, T.S., et al., The struggle for life of the genome’s selfish architects, Biol. Direct., 2011, vol. 6, no. 1, p. 19. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lisch, D., How important are transposons for plant evolution?, Nat. Rev. Genet., 2012, vol. 14, no. 1, pp. 49—61. CrossRefGoogle Scholar
  48. 48.
    Petrov, D.A., Fiston-Lavier, A.-S., Gonzalez, J., et al., Population genomics of transposable elements in Drosophila melanogaster, Annu. Rev. Genet., 2014, vol. 48, no. 5, pp. 561—581. CrossRefPubMedGoogle Scholar
  49. 49.
    Adrion, J.R., Song, M.J., Schrider, D.R., et al., Genome-wide estimates of transposable element insertion and deletion rates in Drosophila melanogaster, Genome Biol. Evol., 2017, vol. 9, no. 5, pp. 1329—1340. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Luan, D.D., Korman, M.H., Jakubczak, J.L., and Eickbush, T.H., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition, Cell, 1993, vol. 72, no. 4, pp. 595—605.CrossRefPubMedGoogle Scholar
  51. 51.
    Zou, S. and Voytas, D.F., Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 7412—7416.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Levin, H.L. and Moran, J.V., Dynamic interactions between transposable elements and their hosts, Nat. Rev. Genet., 2011, vol. 12, no. 9, pp. 615—627. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chuong, E.B., Elde, N.C., and Feschotte, C., Regulatory activities of transposable elements: from conflicts to benefits, Nat. Rev. Genet., 2016, vol. 18, no. 2, pp. 71—86. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Qi, X. and Sandmeyer, S., In vitro targeting of strand transfer by the Ty3 retroelement integrase, J. Biol. Chem., 2012, vol. 287, no. 22, pp. 18589—18595. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sultana, T., Zamborlini, A., Cristofari, G., and Lesage, P., Integration site selection by retroviruses and transposable elements in eukaryotes, Nat. Rev. Genet., 2017, vol. 18, no. 5, pp. 292—308. CrossRefPubMedGoogle Scholar
  56. 56.
    Aravin, A.A., Sachidanandam, R., Bourc’his, D., et al., A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice, Mol. Cell, 2008, vol. 31, no. 6, pp. 785—799. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Elsässer, S.J., Noh, K.-M., Diaz, N., et al., Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells, Nature, 2015, vol. 522, no. 7555, pp. 240—244. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Barau, J., Teissandier, A., Zamudio, N., et al., The DNA methyltransferase DNMT3C protects male germ cells from transposon activity, Science, 2016, vol. 354, no. 6314, pp. 909—912.CrossRefPubMedGoogle Scholar
  59. 59.
    Haig, D., Transposable elements: self-seekers of the germline, team-players of the soma, BioEssays, 2016, vol. 38, no. 11, pp. 1158—1166. CrossRefPubMedGoogle Scholar
  60. 60.
    Grow, E.J., Flynn, R.A., Chavez, S.L., et al., Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells, Nature, 2015, vol. 522, no. 7555, pp. 221—225. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Izsvák, Z., Wang, J., Singh, M., et al., Pluripotency and the endogenous retrovirus HERVH: conflict or serendipity?, BioEssays, 2016, vol. 38, no. 1, pp. 109—117. CrossRefPubMedGoogle Scholar
  62. 62.
    Jacobs, F.M.J., Greenberg, D., Nguyen, N., et al., An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons, Nature, 2014, vol. 516, no. 7530, pp. 242—245. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cam, H.P., Noma, K., Ebina H., et al., Host genome surveillance for retrotransposons by transposon-derived proteins, Nature, 2008, vol. 451, no. 7177, pp. 431—436. CrossRefPubMedGoogle Scholar
  64. 64.
    Piacentini, L., Fanti, L., Specchia, V., et al., Transposons, environmental changes, and heritable induced phenotypic variability, Chromosoma, 2014, vol. 123, no. 4, pp. 345—354. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Oliver, K.R. and Greene, W.K., Transposable elements: powerful facilitators of evolution, BioEssays, 2009, vol. 31, no. 7, pp. 703—714. CrossRefPubMedGoogle Scholar
  66. 66.
    Kunarso, G., Chia, N.-Y., Jeyakani, J., et al., Transposable elements have rewired the core regulatory network of human embryonic stem cells, Nat. Genet., 2010, vol. 42, no. 7, pp. 631—634. CrossRefPubMedGoogle Scholar
  67. 67.
    Bourque, G., Leong, B., Vega, V.B., et al., Evolution of the mammalian transcription factor binding repertoire via transposable elements, Genome Res., 2008, vol. 18, no. 11, pp. 1752—1762. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Thornburg, B.G., Gotea, V., Makałowski, W. Transposable elements as a significant source of transcription regulating signals, Gene, 2006, vol. 365, pp. 104—110. CrossRefPubMedGoogle Scholar
  69. 69.
    Sundaram, V., Cheng, Y., Ma, Z., et al., Widespread contribution of transposable elements to the innovation of gene regulatory networks, Genome Res., 2014, vol. 24, no. 12, pp. 1963—1976. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wang, T., Zeng, J., Lowe, C.B., et al., Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 47, pp. 18613—18618. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    de Souza, F.S.J., Franchini, L.F., and Rubinstein, M., Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong?, Mol. Biol. Evol., 2013, vol. 30, no. 6, pp. 1239—1251. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Schmidt, D., Schwalie, P.C., Wilson, M.D., et al., Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages, Cell, 2012, vol. 148, nos. 1—2, pp. 335—348. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lunyak, V.V., Prefontaine, G.G., Nunez, E., et al., Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis, Science, 2007, vol. 317, no. 5835, pp. 248—251. CrossRefPubMedGoogle Scholar
  74. 74.
    Bire, S., Casteret, S., Piégu, B., et al., Mariner transposons contain a silencer: possible role of the polycomb repressive complex 2, PLoS Genet., 2016, vol. 12, no. 3. e1005902. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang, J., Vicente-García, C., Seruggia, D., et al., MIR retrotransposon sequences provide insulators to the human genome, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 32, pp. E4428—E4437. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hollister, J.D. and Gaut, B.S., Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression, Genome Res., 2009, vol. 19, no. 8, pp. 1419—1428. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lisch, D. and Bennetzen, J.L., Transposable element origins of epigenetic gene regulation, Curr. Opin. Plant Biol., 2011, vol. 14, no. 2, pp. 156—161. CrossRefPubMedGoogle Scholar
  78. 78.
    Feschotte, C., Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet., 2008, vol. 9, no. 5, pp. 397—405. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Cohen, C.J., Lock, W.M., and Mager, D.L., Endogenous retroviral LTRs as promoters for human genes: a critical assessment, Gene, 2009, vol. 448, no. 2, pp. 105—114. CrossRefPubMedGoogle Scholar
  80. 80.
    Simonti, C.N., Pavličev, M., and Capra, J.A., Transposable element exaptation into regulatory regions is rare, influenced by evolutionary age, and subject to pleiotropic constraints, Mol. Biol. Evol., 2017, vol. 34, no. 11, pp. 2856—2869. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Baptiste, B.A., Ananda, G., Strubczewski, N., et al., Mature microsatellites: mechanisms underlying dinucleotide microsatellite mutational biases in human cells, G3 (Bethesda), 2013, vol. 3, no. 3, pp. 451—463. CrossRefPubMedGoogle Scholar
  82. 82.
    Zemojtel, T., Kielbasa, S.M., Arndt, P.F., et al., CpG deamination creates transcription factor-binding sites with high efficiency, Genome Biol. Evol., 2011, vol. 3, pp. 1304—1311. CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kuzu, G., Kaye, E.G., Chery, J., et al., Expansion of GA dinucleotide repeats increases the density of CLAMP binding sites on the X-chromosome to promote Drosophila dosage compensation, PLoS Genet., 2016, vol. 12, no. 7. e1006120. CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Rebollo, R., Romanish, M.T., and Mager, D.L., Transposable elements: an abundant and natural source of regulatory sequences for host genes, Annu. Rev. Genet., 2011, vol. 46, no. 1, pp. 21—42. CrossRefGoogle Scholar
  85. 85.
    Koonin, E.V. and Wolf, Y.I., Constraints and plasticity in genome and molecular-phenome evolution, Nat. Rev. Genet., 2010, vol. 11, no. 7, pp. 487—498. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Negi, P., Rai, A.N., and Suprasanna, P., Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response, Front. Plant Sci., 2016, vol. 7, no. 1448.
  87. 87.
    Dubin, M.J., Mittelsten Scheid, O., and Becker, C., Transposons: a blessing curse, Curr. Opin. Plant Biol., 2018, vol. 42, pp. 23—29. CrossRefPubMedGoogle Scholar
  88. 88.
    Nowick, K., Hamilton, A.T., Zhang, H., and Stubbs, L., Rapid sequence and expression divergence suggest selection for novel function in primate-specific KRAB-ZNF genes, Mol. Biol. Evol., 2010, vol. 27, no. 11, pp. 2606—2617. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yang, P., Wang, Y., and Macfarlan, T.S., The role of KRAB-ZFPs in transposable element repression and mammalian evolution, Trends Genet., 2017, vol. 33, no. 11, pp. 871—881. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ecco, G., Cassano, M., Kauzlaric, A., et al., Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues, Dev. Cell, 2016, vol. 36, no. 6, pp. 611—623. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gifford, W.D., Pfaff, S.L., and Macfarlan, T.S., Transposable elements as genetic regulatory substrates in early development, Trends Cell Biol., 2013, vol. 23, no. 5, pp. 218—226. CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Friedli, M. and Trono, D., The developmental control of transposable elements and the evolution of higher species, Annu. Rev. Cell Dev. Biol., 2015, vol. 31, no. 1, pp. 429—451. CrossRefPubMedGoogle Scholar
  93. 93.
    Thomas, J.H. and Schneider, S., Coevolution of retroelements and tandem zinc finger genes, Genome Res., 2011, vol. 21, no. 11, pp. 1800—1812. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Blumenstiel, J.P., Evolutionary dynamics of transposable elements in a small RNA world, Trends Genet., 2011, vol. 27, no. 1, pp. 23—31. CrossRefPubMedGoogle Scholar
  95. 95.
    Creasey, K.M., Zhai, J., Borges, F., et al., miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis, Nature, 2014, vol. 508, no. 7496, pp. 411—415. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    McCue, A.D. and Slotkin, R.K., Transposable element small RNAs as regulators of gene expression, Trends Genet., 2012, vol. 28, no. 12, pp. 616—623. CrossRefPubMedGoogle Scholar
  97. 97.
    Chuong, E.B., Elde, N.C., and Feschotte, C., Regulatory activities of transposable elements: from conflicts to benefits, Nat. Rev. Genet., 2016, vol. 18, no. 2, pp. 71—86. CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Göke, J. and Ng, H.H., CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome, EMBO Rep., 2016, vol. 17, no. 8. e201642743. CrossRefGoogle Scholar
  99. 99.
    Chuong, E.B., Elde, N.C., and Feschotte, C., Regulatory evolution of innate immunity through co-option of endogenous retroviruses, Science, 2016, vol. 351, no. 6277, pp. 1083—1087. CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Feschotte, C. and Gilbert, C., Endogenous viruses: insights into viral evolution and impact on host biology, Nat. Rev. Genet., 2012, vol. 13, no. 4, pp. 283—296. CrossRefPubMedGoogle Scholar
  101. 101.
    Ge, S.X., Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development, BMC Genomics, 2017, vol. 18, no. 1, p. 200. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Koonin, E.V., The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?, Biol. Direct., 2006, vol. 1, no. 1, p. 22. CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Koonin, E.V., Viruses and mobile elements as drivers of evolutionary transitions, Philos. Trans. R. Soc., B, 2016, vol. 371, no. 1701, p. 20150442.
  104. 104.
    Jurka, J., Bao, W., Kojima, K.K., et al., Distinct groups of repetitive families preserved in mammals correspond to different periods of regulatory innovations in vertebrates, Biol. Direct., 2012, vol. 7, p. 36. CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Imbeault, M., Helleboid, P.-Y., and Trono, D., KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks, Nature, 2017, vol. 543, no. 7646, pp. 550—554. CrossRefPubMedGoogle Scholar
  106. 106.
    Albertin, C.B., Simakov, O., Mitros, T., et al., The octopus genome and the evolution of cephalopod neural and morphological novelties, Nature, 2015, vol. 524, no. 7564, pp. 220—224. CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Muotri, A.R., Chu, V.T., Marchetto, M.C.N., et al., Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition, Nature, 2005, vol. 435, no. 7044, pp. 903—910. CrossRefPubMedGoogle Scholar
  108. 108.
    Perrat, P.N., DasGupta, S., Wang, J., et al., Transposition-driven genomic heterogeneity in the Drosophila brain, Science, 2013, vol. 340, no. 6128, pp. 91—95. CrossRefPubMedGoogle Scholar
  109. 109.
    Rajasethupathy, P., Antonov, I., Sheridan, R., et al., A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity, Cell, 2012, vol. 149, no. 3, pp. 693—707. CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Nandi, S., Chandramohan, D., Fioriti, L., et al., Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, no. 45, pp. 12697—12702. CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Zhao, J., Sun, B.K., Erwin, J.A., et al., Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome, Science, 2008, vol. 322, no. 5902, pp. 750—756. CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Elisaphenko, E.A., Kolesnikov, N.N., Shevchenko, A.I., et al., A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements, PLoS One, 2008, vol. 3, no. 6. e2521. CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Ellison, C.E. and Bachtrog, D., Dosage compensation via transposable element mediated rewiring of a regulatory network, Science, 2013, vol. 342, no. 6160, pp. 846—850. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Kannan, S., Chernikova, D., Rogozin, I.B., et al., Transposable element insertions in long intergenic non-coding RNA genes, Front. Bioeng. Biotechnol., 2015, vol. 3, no. 71.
  115. 115.
    Kelley, D. and Rinn, J., Transposable elements reveal a stem cell-specific class of long noncoding RNAs, Genome Biol., 2012, vol. 13, no. 11, p. R107. CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Durruthy-Durruthy, J., Sebastiano, V., Wossidlo, M., et al., The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming, Nat. Genet., 2015, vol. 48, no. 1, pp. 44—52. CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Piriyapongsa, J. and Jordan, I.K., A family of human microRNA genes from miniature inverted-repeat transposable elements, PLoS One, 2007, vol. 2, no. 2. e203. CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, no. 7, pp. 959—976. CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Liang, D. and Wilusz, J.E., Short intronic repeat sequences facilitate circular RNA production, Genes Dev., 2014, vol. 28, no. 20, pp. 2233—2247. CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Qu, S., Zhong, Y., Shang, R., et al., The emerging landscape of circular RNA in life processes, RNA Biol., 2016, vol. 14, no. 8, pp. 992—999. CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Göke, J., Lu, X., Chan, Y.-S., et al., Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells, Cell Stem Cell., 2015, vol. 16, no. 2, pp. 135—141. CrossRefPubMedGoogle Scholar
  122. 122.
    Loewer, S., Cabili, M.N., Guttman, M., et al., Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells, Nat. Genet., 2010, vol. 42, no. 12, pp. 1113—1117. CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Lu, X., Sachs, F., Ramsay, L., et al., The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 2014, vol. 21, no. 4, pp. 423—425. CrossRefPubMedGoogle Scholar
  124. 124.
    Rinn, J.L. and Chang, H.Y., Genome regulation by long noncoding RNAs, Annu. Rev. Biochem., 2012, vol. 81, pp. 145—166. CrossRefPubMedGoogle Scholar
  125. 125.
    Cannavò, E., Khoueiry, P., Garfield, D.A., et al., Shadow enhancers are pervasive features of developmental regulatory networks, Curr. Biol., 2016, vol. 26, no. 1, pp. 38—51. CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Haerty, W., Ponting, C.P., Meader, S., et al., Mutations within lncRNAs are effectively selected against in fruit fly but not in human, Genome Biol., 2013, vol. 14, no. 5, p. R49. CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Roth, D.B. and Craig, N.L., VDJ recombination: a transposase goes to work, Cell, 1998, vol. 94, no. 4, pp. 411—414.CrossRefPubMedGoogle Scholar
  128. 128.
    Joly-Lopez, Z., Hoen, D.R., Blanchette, M., et al., Phylogenetic and genomic analyses resolve the origin of important plant genes derived from transposable elements, Mol. Biol. Evol., 2016, vol. 33, no. 8, pp. 1937—1956. CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Volff, J.-N., Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes, BioEssays, 2006, vol. 28, no. 9, pp. 913—922. CrossRefPubMedGoogle Scholar
  130. 130.
    Naville, M., Warren, I.A., Haftek-Terreau, Z., et al., Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates, Clin. Microbiol. Infect., 2016, vol. 22, no. 4, pp. 312—323. CrossRefPubMedGoogle Scholar
  131. 131.
    Ikeda, Y., Pélissier, T., Bourguet, P., et al., Arabidopsis proteins with a transposon-related domain act in gene silencing, Nat. Commun., 2017, vol. 8, p. 15122. CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Aziz, R.K., Breitbart, M., and Edwards, R.A., Transposases are the most abundant, most ubiquitous genes in nature, Nucleic Acids Res., 2010, vol. 38, no. 13, pp. 4207—4217. CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Kapusta, A., Suh, A., and Feschotte, C., Dynamics of genome size evolution in birds and mammals, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 8, pp. E1460—E1469. CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Wendel, J.F., Jackson, S.A., Meyers, B.C., and Wing, R.A., Evolution of plant genome architecture, Genome Biol., 2016, vol. 17, no. 1, p. 37. CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Vicient, C.M. and Casacuberta, J.M., Impact of transposable elements on polyploid plant genomes, Ann. Bot., 2017, vol. 120, no. 2, pp. 195—207. CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Wagner, G.P. and Altenberg, L., Perspective: complex adaptations and the evolution of evolvability, Evolution (New York), 1996, vol. 50, no. 3, p. 967. CrossRefPubMedGoogle Scholar
  137. 137.
    Stoltzfus, A., On the possibility of constructive neutral evolution, J. Mol. Evol., 1999, vol. 49, no. 2, pp. 169—181. CrossRefPubMedGoogle Scholar
  138. 138.
    Speijer, D., Does constructive neutral evolution play an important role in the origin of cellular complexity?, BioEssays, 2011, vol. 33, no. 5, pp. 344—349. CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. A. Pirogov
    • 1
    Email author
  • O. G. Maksimenko
    • 1
  • P. G. Georgiev
    • 1
  1. 1.Institute of Gene Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations