Skip to main content
Log in

Genetic Structure of the Hyrcanian Wood Frog, Rana pseudodalmatina (Amphibia: Ranidae) Using mtDNA Gene Sequences

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Population structuring of a species provide basic information for biological conservation. We investigated the genetic structure of seven populations of Rana pseudodalmatina, an endemic species of the Ranidae inhabiting the Hyrcanian forests in northern Iran, based on the genetic variation of two partial mitochondrial DNA sequences (16S rRNA and cytochrome b genes). Molecular genetic analyses revealed remarkable variation among populations of R. pseudodalmatina. The phylogenetic trees clearly indicated two distinct haplogroups, which largely corresponded to their geographic locations. A strong population structure was found (ΦCT = 0.559, P = 0.027) with high haplotype diversity (Hd = 0.88) and low nucleotide diversity (π = 0.0041). Analysis of molecular variance (AMOVA) indicated that most of the observed genetic variation (55.92%) occurred between the two haplogroups. Also, Mantel tests revealed a significant correlation between geographic and genetic distances (R2 = 0.33, P = 0.005). Finally, the star-like topology of haplotype network and also neutrality tests provide strong evidence for population expansion in two haplogroups. All the findings of the present study, suggest a strong evidence for past expansion of isolated populations of R. pseudodalmatina, which their isolation could be largely attributed to rising level of the Caspian Sea during last glacial periods in the Pleistocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Frankham, R., Ballou, J.D. and Briscoe, D.A., Introduction to Conservation Genetics, New York: Cambridge University Press, 2002.

    Book  Google Scholar 

  2. Hughes, A.R., Inouye, B.D., Johnson, M.T.J., et al., Ecological consequences of genetic diversity, Ecol. Lett., 2008, vol. 11, pp. 609-623.

    Article  PubMed  Google Scholar 

  3. Scherer, R.D., Muths, E., Noon, B.R. and Oyler-McCance, S.J., The genetic structure of a relict population of wood frogs, Conserv. Genet., 2012, vol. 13, pp. 1521-1530.

    Article  Google Scholar 

  4. Newman, D. and Pilson, D., Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella, Evolution, 1997, vol. 51, pp. 354-362.

    Article  PubMed  Google Scholar 

  5. Stuart, S.N., Chanson, J.S., Cox, N.A., et al., Status and trends of amphibian declines and extinctions worldwide, Science, 2004, vol. 306, pp. 1783-1786.

    Article  PubMed  CAS  Google Scholar 

  6. Wake, D.B., Facing extinction in real time, Science, 2012, vol. 335, pp.1052-1053.

    Article  PubMed  CAS  Google Scholar 

  7. Cushman, S.A., Effects of habitat loss and fragmentation on amphibians: a review and prospectus, Biol. Conserv., 2006, no. 128, pp. 231-240.

  8. Storfer, A., Eastman, J.M. and Spear, S.F., Modern methods for amphibian conservation, BioScience, 2009, vol. 59, no. 7, pp. 559-571.

    Article  Google Scholar 

  9. Allentof, M.E. and O’Brien, J., Global amphibian declines, loss of genetic diversity and fitness: a review, Diversity, 2010, vol. 2, pp. 47-71.

    Article  Google Scholar 

  10. Nori, J., Lemes, P., Urbina-Cardona, N., et al., Amphibian conservation, land use changes and protected areas: a global overview, Biol. Conserv., 2015, vol. 191, pp. 367-374.

    Article  Google Scholar 

  11. Veith, M., Kosuch, J. and Vences, M., Climatic oscillations triggered post-Messinian speciation of Western Palearctic brown frogs (Amphibia, Anura, Ranidae), Mol. Phylogenet. Evol., 2003, vol. 26, pp. 310-327.

    Article  PubMed  CAS  Google Scholar 

  12. Picariello, O., Feliciello, I., Scillitani, G., et al., Evidenze morfologiche e molecolari dell’identita tassonomica di Rana macrocnemis, Rana camerani e Rana holtzi (Anura: Ranidae), Riv. Idrobiol. (Perugia),1999, vol. 38, pp. 168-182.

    Google Scholar 

  13. Pesarakloo, A., Gharzi, A. and Kami, H.G., An investigation on the reproductive biology of Rana macrocnemis pseudodalmatina (Amphibians: Anura) in Golestan province (Minudasht), Iri. J. Biol., 2009, vol. 25, no. 1, pp. 55-63 [In Farsi].

    Google Scholar 

  14. Bruford, M.W., Hanotte, O., Brookfeild, J.F.Y., et al., Multilocus and single locus DNA fingerprinting, Molecular Genetic Analysis of Populations: A Practical Approach, Hoelzel, A.R., Ed., Oxford, UK: IRL Press, 1998, 2nd ed.

    Google Scholar 

  15. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95-98.

    CAS  Google Scholar 

  16. Farris, J.S, Källersjö, M., Kluge, A.G., et al., Constructing a significance test for incongruence, Syst. Biol., 1995, vol. 44, pp. 570-572.

    Article  Google Scholar 

  17. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods): Version 4, Sunderland: Sinauer Associates, 2003.

    Google Scholar 

  18. Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451-1452.

    Article  PubMed  CAS  Google Scholar 

  19. Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564-567. doi 10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  20. Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585-595.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Fu, Y-X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics,1997, vol. 147, pp. 915-925.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Rousset, F., Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance, Genetics, 1997, vol. 145, pp. 1219-1228.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Hijmans, R. J., Cruz, M., Rojas, E. and Guarino, L., DIVA-GIS, version 1.4: a geographic information system for the management and analysis of genetic resources data, 2001. http://www.diva-gis.org.

  24. Guindon, S. and Gascuel, O., A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst. Biol., 2003, vol. 52, pp. 696-704.

    Article  PubMed  Google Scholar 

  25. Posada, D., jModelTest: phylogenetic model averaging, Mol. Biol. Evol., 2008, vol. 25, pp. 1253-1256.

    Article  PubMed  CAS  Google Scholar 

  26. Gascuel, O., BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data, Mol. Biol. Evol., 1997, vol. 14, pp. 685-695.

    Article  PubMed  CAS  Google Scholar 

  27. Ronquist, F. and Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, vol. 19, pp. 1572-1574.

    Article  PubMed  CAS  Google Scholar 

  28. Ronquist, F., Teslenko, M., Van der Mark, P., et al., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 2012, vol. 61, no. 3, pp. 539-542.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bandelt, H.J., Forster, P. and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37-48.

    Article  PubMed  CAS  Google Scholar 

  30. Farjallah, S., Amor, N., Merella, P., et al., Pattern of genetic diversity of North African green frog Pelophylax saharicus (Amphibia) in Tunisia, Pak. J. Zool., 2012, vol. 44, no. 4, pp. 901-907.

    Google Scholar 

  31. Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, Massachusetts: Harvard University Press, 2000.

    Google Scholar 

  32. Miller, A.G., Hyrcanian forests, Iran and Azerbaijan, Centres of Plant Diversity: A Guide and Strategy for Their Conservation in 3 Volumes, Davis, S.D., Heywood, V.H., and Hamilton, A.C., Eds., Cambridge, UK: WWF, 1994, vol. 1, pp. 343-344.

    Google Scholar 

  33. Akhani, H., Djamali, M., Ghorbanalizadeh, A., et al., Plant biodiversity of Hyrcanian relict forests, Iran: an overview of the flora, vegetation, palaeoecology and conservation, Pak. J. Bot., 2010, vol. 42, pp. 231–258.

    Google Scholar 

  34. Yanko-Hombach, V., Kroonenberg, S., and Leroy, S.A.G., Caspian-Black Sea-Mediterranean corridors during the last 30 ka: sea level change and human adaptive strategies, Proceedings of IGCP 521 and 481 INQUA 501 Third Plenary Meeting and Field Trip, Quat. Int., 2010, vol. 225, no. 2, pp. 147-149.

    Article  Google Scholar 

  35. Slatkin, M. and Hudsont, R.R., Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations, Genetics, 1991, vol. 129, pp. 555-562.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the Iranian Department of Environment for sampling authorization and support during fieldwork especially Golestan, Mazanderan and Gilan Department of Environment. We wish to thank Razi University authorities for support during fieldwork and collecting specimens. We also thank the honorable authorities of Hakim Sabsevari University for helping with the lab task. We specially thank Seyyed Saeed Hosseinian Yousefkhani for his help in the molecular laboratory and Mr. Amirreza Zarei and Reza Motamedi for their unforgettable help during field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gharzi.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najibzadeh, M., Gharzi, A., Rastegar-Pouyani, N. et al. Genetic Structure of the Hyrcanian Wood Frog, Rana pseudodalmatina (Amphibia: Ranidae) Using mtDNA Gene Sequences. Russ J Genet 54, 1221–1228 (2018). https://doi.org/10.1134/S1022795418100095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418100095

Keywords:

Navigation