Skip to main content
Log in

Genetic Polymorphism and Population Structure of the Introduced American Mink (Neovison vison Schreber, 1777) in the Center of European Russia Based on Microsatellite Loci

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic polymorphism and the population genetic structure of ranch (maintained at the fur farms) and feral American minks inhabiting the geographical region of the Caspian–Baltic watershed of the European part of Russia were investigated using eight microsatellite loci. A relatively high level of genetic variability of these forms with a tendency of higher polymorphism in the feral population was revealed. Between ranch and feral minks, not considerable, but highly statistically significant genetic differences were established. The gene pool of free-ranging minks does not bear traces of recent hybridization with ranch forms. The feral population is characterized by a distinct genetic structure and a pronounced pattern of genetic isolation by distance. Statistically significant differences in the genetic structure of local groups of animals inhabiting different regions of the studied territory are determined by the recent history of naturalization of the invasive species, including deliberate introduction in the northeast of the studied region and colonization of other parts of the Caspian–Baltic watershed by the descendants of the fur farm escapees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Pavlov, M.P., Korsakova, I.B., Timofeev, V.V., and Safonov, V.G., Akklimatizatsiya okhotnich’e-promyslovykh zverei i ptits v SSSR (Acclimatization of Game Animals and Birds in the USSR), Kirov: Volgo-Vyatskoe Izd., part 1, 1973.

  2. Danilov, P.I., Novye vidy mlekopitayushchikh na Evropeiskom Severe Rossii (New Species of Mammals in the European North of Russia), Petrozavodsk: Karelia Nauch. Tsentr Ross. Akad. Nauk, 2009.

    Google Scholar 

  3. Hammershøj, M., Pertoldi, C., Asferg, T., et al., Danish free-ranging mink populations consist mainly of farm animals: evidence from microsatellite and stable isotope analyses, J. Nat. Conserv., 2005, vol. 13, pp. 267-274. doi 10.1016/j.jnc.2005.03.001

    Article  Google Scholar 

  4. Kidd, A.G., Bowman, J., Lesbarreres, D., and Schulte-Hostedde, A.I., Hybridization between escaped domestic and wild American mink (Neovison vison), Mol. Ecol., 2009, vol. 18, pp. 1175-1186. doi 10.1111/j.1365-294X.2009.04100.x

    Article  PubMed  CAS  Google Scholar 

  5. Dgebuadze, Yu.Yu., Lushchekina, A.A., and Ne-ronov, V.M., Alien species and the biodiversity of Russia, Ekol. Zhizn’, 2009, vol. 88, no. 3, pp. 32-39.

    Google Scholar 

  6. Tumanov, I.L., Redkie khishchnye mlekopitayushchie Rossii (melkie i srednie vidy) (Rare Carnivorous Mammals of Russia (Small and Medium-Sized Species)), St. Petersburg: Branko, 2009.

  7. Genovesi, P., Bacher, S., Kobelt, M., et al., Alien mammals of Europe, in Handbook of Alien Species in Europe, DAISIE, Ed., Dordrecht: Springer-Verlag, 2009, pp. 119-128.

  8. Michalska-Parda, A., Brzezicski, M., Zalewski, A., and Kozakiewicz, M., Genetic variability of feral and ranch American mink Neovison vison in Poland, Acta Theriol., 2009, vol. 54, pp. 1-10.

    Article  Google Scholar 

  9. Zalewski, A., Michalska-Parda, A., Bartoszewicz, M., et al., Multiple introductions determine the genetic structure of an invasive species population: American mink Neovison vison in Poland, Biol. Conserv., 2010, vol. 143, pp. 1355-1363. doi 10.1016/j.biocon.2010.03.009

    Article  Google Scholar 

  10. Korablev, M.P., Korablev, N.P., and Korablev, P.N., Morphophenetical analysis of American mink (Neovison vison) populations from Caspian-Baltic watershed, Russ. J. Biol. Invasions, 2013, vol. 4, no. 1, pp. 24-38. https://doi.org/10.1134/S2075111713010050.

    Article  Google Scholar 

  11. Korablev, N.P., Korablev, M.P., Korablev, P.N., and Volkov, N.O., Polymorphism of the American mink (Neovison vison (Schreber, 1777)) populations inhabiting the Caspian-Baltic watershed inferred by means of mtDNA D-loop, Russ. J. Biol. Invasions, 2017, vol. 8, no. 1, pp. 45-54. https://doi.org/10.1134/ S2075111717010064.

    Article  Google Scholar 

  12. Belliveau, A.M., Farid, A., O’Connell, M., and Wright, J.M., Assessment of genetic variability in captive and wild American mink (Mustela vison) using microsatellite markers, Can. J. Anim. Sci., 1999, vol. 79, no. 1, pp. 7-16.

    Article  Google Scholar 

  13. Stevens, R.-T., Kennedy, M.-L., and Kelley, V.-R., Genetic structure of American mink (Mustela vison) populations, Southwestern Nat., 2005, vol. 50, no. 3, pp. 350-355. doi 10.1894/0038-4909(2005)050[0350:GSOAMM]2.0.CO;2

    Article  Google Scholar 

  14. Lecis, R., Ferrando, A., Ruiz-Olmo, J., et al., Population genetic structure and distribution of introduced American mink (Mustela vison) in Spain, based on microsatellite variation, Conserv. Genet., 2008, no. 9, pp. 1149-1161. doi 10.1007/s10592-007-9428-6

  15. Zalewski, A., Piertney, S.-B., Zalewska, H., and Lambin, X., Landscape barriers reduce gene flow in an invasive carnivore: geographical and local genetic structure of American mink in Scotland, Mol. Ecol., 2009, vol. 18, no. 8, pp. 1601-1615. doi 10.1111/j.1365-294X.2009.04100.x

    Article  PubMed  Google Scholar 

  16. Bifolchi, A., Picard, D., Lemaire, C., Cormier, J.P., and Pagano, A., Evidence of admixture between differentiated genetic pools at a regional scale in an invasive carnivore, Conserv. Genet., 2010, no. 11, pp. 1-9. doi 10.1007/s10592-008-9780-1

  17. Shimatani, Y., Fukue, Y., Kishimoto, R., and Masuda, R., Genetic variation and population structure of the feral American mink (Neovison vison) in Nagano, Japan, revealed by microsatellite analysis, Mamm. Study, 2010, vol. 35, no. 1, pp. 1-7. doi 10.3106/041.035.0101

    Article  Google Scholar 

  18. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, no. 155, pp. 945-959.

  19. O’Connell, M., Wright, J.M., and Farid, A., Development of PCR primers for nine polymorphic American mink Mustela vison microsatellite loci, Mol. Ecol., 1996, no. 5, pp. 311-312.

  20. Fleming, M.A., Ostrander, E.A., and Cook, J.A., Microsatellite markers for American mink (Mustela vison) and ermine (Mustela erminea), Mol. Ecol., 1999, no. 8, pp. 1351-1362.

  21. Excoffier, L., Laval, G., and Schneider, S., Arlequin (ver. 3.0): an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47-50.

    Article  CAS  Google Scholar 

  22. Park, S.D.E., MStools v 3.1.1: Excel Spreadsheet Toolkit for Data Conversion, 2008. http://animalgenomics.ucd.ie/sdepark/ms-toolkit/. Accessed November 21, 2010.

  23. Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, vol. 14, pp. 2611-2620. doi 10.1111/j.1365-294X.2005.02553.x

    Article  PubMed  CAS  Google Scholar 

  24. Earl, D.A. and Von Holdt, B.M., Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method, Conserv. Genet. Resour., 2012, vol. 4, no. 2, pp. 359-361. https://doi.org/10.1007/s12686-011-9548-7.

    Article  Google Scholar 

  25. Kalinowski, S.T., Taper, M.L., and Marshall, T.C., Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment, Mol. Ecol., 2007, vol. 16, pp. 1099-1106. doi 10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  26. Peakall, R. and Smouse, P.E., GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288-295. doi 10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  27. Bohonak, A.J., IBD (Isolation By Distance): a program for analyses of isolation by distance, J. Hered., 2002, vol. 93, pp. 153-154.

    Article  PubMed  CAS  Google Scholar 

  28. Dunstone, N., The Mink, London: T and A D Poyser Natural History, 1993.

    Google Scholar 

  29. Bonesi, L. and Palazon, S., The American mink in Europe: status, impacts, and control, Biol. Conserv., 2007, vol. 134, pp. 470-483. doi 10.1016/j.biocon.2006.09.006

    Article  Google Scholar 

  30. Li Ching Chun, First Course in Population Genetics, Pacific Grove: Boxwood, 1976.

    Google Scholar 

  31. Kaidanov, L.Z., Genetika populyatsii (Genetics of Populations), Moscow: Vysshaya Shkola, 1996.

    Google Scholar 

  32. Slatkin, M., Isolation by distance in equilibrium and nonequilibrium populations, Evolution, 1993, vol. 47, pp. 264-279.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the management of Znamenskoe fur farm and personally I.B. Tikhomirov for help in collecting the material and consulting.

This study was supported by the Russian Foundation for Basic Research (grant no. 16-34-01010 mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Korablev.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korablev, M.P., Korablev, N.P. & Korablev, P.N. Genetic Polymorphism and Population Structure of the Introduced American Mink (Neovison vison Schreber, 1777) in the Center of European Russia Based on Microsatellite Loci. Russ J Genet 54, 1179–1184 (2018). https://doi.org/10.1134/S1022795418100083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418100083

Keywords:

Navigation