Skip to main content
Log in

Genome Duplication in Animal Evolution

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In this review, the available data on whole genome duplication in different phylogenetic lineages of animals are summarized, and possible mechanisms of the genome duplication and its role in the evolution of animals are considered. Special attention is paid to the problems of studying the first stages of the genome evolution after its duplication and to the search for species the study of which will make it possible to identify the peculiarities of the genome “diploidization” process after its duplication. A group of species of free-living flatworms from the Macrostomum genus is suggested as a promising model object for such studies. According to our data, the genomes of some Macrostomum members (M. lignano, Macrostomum sp. 8) are a result of recent genome duplication and subsequent chromosome rearrangements. In addition, the peculiarities of morphology, life cycle, small genome size, and simply organized karyotype make Macrostomum almost an ideal model object for studying the early stages of duplicated genome reorganization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Coyne, J.A. and Orr, H.A., Speciation, Sunderland, MA: Sinauer, 2004.

    Google Scholar 

  2. Mayrose, I., Zhan, S.H., Rothfels, S.J., et al., Recently formed polyploid plants diversify at lower rates, Science, 2011, vol. 333, no. 6047, p. 1257. doi 10.1126/science.1207205

    Article  PubMed  CAS  Google Scholar 

  3. Arrigo, N. and Barker, M.S., Rarely successful polyploids and their legacy in plant genomes, Curr. Opin. Plant Biol., 2012, vol. 15, no. 2, pp. 140-146. doi 10.1016/j.pbi.2012.03.010

    Article  PubMed  CAS  Google Scholar 

  4. Soltis, D.E., Segovia-Salcedo, M.C., Jordon-Thaden, I., et al., Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al., New Phytol., 2014, vol. 202, no. 4, pp. 1105-1117. doi 10.1111/nph.12756

    Article  PubMed  Google Scholar 

  5. Berthelot, C., Brunet, F., Chalopin, D., et al., The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates, Nat. Commun., 2014, vol. 5, no. 3657, pp. 1-10. doi 10.1038/ncomms4657

    Article  Google Scholar 

  6. Pasquier, J., Cabau, C., Nguyen, T., et al., Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database, BMC Genomics, 2016, vol. 17, no. 368, pp. 1-10. doi 10.1186/s12864-016-2709-z

    Article  CAS  Google Scholar 

  7. Blomme, T., Vandepoele, K., De Bodt, S., et al., The gain and loss of genes during 600 million years of vertebrate evolution, Genome Biol., 2006, vol. 7, no. 5, p. R43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Meyer, A. and Schartl, M., Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions, Curr. Opin. Cell Biol., 1999, vol. 11, no. 6, pp. 699-704.

    Article  PubMed  CAS  Google Scholar 

  9. Ohno, S., The one-to-four rule and paralogues of sex-determining genes, Cell. Mol. Life Sci., 1999, vol. 55, nos. 6-7, pp. 824-830.

    Article  PubMed  CAS  Google Scholar 

  10. Wolfe, K.H., Armisen, D., Proux-Wera, E., et al., Clade- and species-specific features of genome evolution in the Saccharomycetaceae, FEMS Yeast Res., 2015, vol. 15, no. 5, pp. 1-12. doi 10.1093/femsyr/fov035

    Article  CAS  Google Scholar 

  11. Zadesenets, K.S., Schӓrer, L., and Rubtsov, N.B., New insights into the karyotype evolution of the free-living flatworm Macrostomum lignano (Platyhelminthes, Turbellaria), Sci. Rep., 2017, vol. 7, no. 1, pp. 1-9. doi 10.1038/s41598-017-06498-0

    Article  CAS  Google Scholar 

  12. Egger, B. and Ishida, S., Chromosome fission or duplication in Macrostomum lignano (Macrostomorpha, Platyhelminthes)—remarks on chromosome numbers in “archoophoran turbellarians,” J. Zool. Syst. Evol. Res., 2005, vol. 43, no. 2, pp. 127-132. doi 10.1111/j.1439-0469.2005.00300.x

    Article  Google Scholar 

  13. Zadesenets, K.S., Vizoso, D.B., Schlatter, A., et al., Evidence for karyotype polymorphism in the free-living flatworm, Macrostomum lignano, a model organism for evolutionary and developmental biology, PLoS One, 2016, vol. 11, no. 10. e0164915. doi 10.1371/journal.pone.0164915

  14. Wasik, K., Gurtowski, J., Zhou, X., et al., Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 40, pp. 12462-12467. doi 10.1073/pnas.1516718112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ohno, S., Evolution by Gene Duplication, London: George Allen and Unwin, 1970.

    Book  Google Scholar 

  16. Garcia-Fernández, J. and Holland, P.W., Archetypal organization of the amphioxus Hox gene cluster, Nature, 1994, vol. 370, no. 6490, pp. 563-566.

    Article  PubMed  Google Scholar 

  17. Martin, A.P., Increasing genomic complexity by gene duplication and the origin of the vertebrates, Am. Nat., 1999, vol. 154, no. 2, pp. 111-128.

    Article  PubMed  Google Scholar 

  18. Smith, J.J. and Keinath, M.C., The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications, Genome Res., 2015, vol. 25, no. 8, pp. 1081-1090. doi 10.1101/gr.184135.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dehal, P. and Boore, J.L., Two rounds of whole genome duplication in the ancestral vertebrate, PLoS Biol., 2005, vol. 3, no. 10. e314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mühlhausen, S. and Kollmar, M., Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins, BMC Evol. Biol., 2013, vol. 13, no. 202, pp. 1-23. doi 10.1186/1471-2148-13-202

    Article  Google Scholar 

  21. Albalat, R. and Canestro, C., Evolution by gene loss, Nat. Rev. Genet., 2016, vol. 17, no. 7, pp. 379-391. doi 10.1038/nrg.2016.39

    Article  PubMed  CAS  Google Scholar 

  22. Inoue, J., Sato, Yu., Sinclair, R., et al., Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 48, pp. 14918-14923. doi 10.1073/pnas.1507669112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Haussler, D., O’Brien, S.J., Ryder, O.A., et al., Genome 10K: a proposal to obtain whole-genome sequence for 10000 vertebrate species, J. Hered., 2009, vol. 100, no. 6, pp. 659-674. doi 10.1093/jhered/esp086

    Article  CAS  Google Scholar 

  24. 5K Consortium, The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment, J. Hered., 2013, vol. 104, no. 5, pp. 595-600. doi 10.1093/jhered/est050

  25. GIGA Community of Scientists, The Global Invertebrate Genomics Alliance (GIGA), Developing community resources to study diverse invertebrate genomes, J. Hered., 2014, vol. 105, no. 1, pp. 1-18. doi 10.1093/jhered/est084

  26. Zadesenets, K.S., Ershov, N.I., and Rubtsov, N.B., Whole-genome sequencing of eukaryotes: from sequencing of DNA fragments to a genome assembly, Russ. J. Genet., 2017, vol. 53, no. 6, pp. 631-639. https://doi.org/10.1134/S102279541705012X.

    Article  CAS  Google Scholar 

  27. Rausch, J.H. and Morgan, M.T., The effect of self-fertilization, inbreeding depression, and population size on autopolyploid establishment, Evolution, 2005, vol. 59, no. 9, pp. 1867-1875.

    PubMed  Google Scholar 

  28. Spring, J., Vertebrate evolution by interspecific hybridisation—are we polyploid?, FEBS Lett., 1997, vol. 400, no. 1, pp. 2-8.

    Article  PubMed  CAS  Google Scholar 

  29. Pennisi, E., Shaking up the tree of life, Science, 2016, vol. 354, no. 6314, pp. 817-821. doi 10.1126/science.354.6314.817

    Article  PubMed  CAS  Google Scholar 

  30. Todesco, M., Pascual, M.A., Owens, G.L., et al., Hybridization and extinction, Evol. Appl., 2016, vol. 9, no. 7, pp. 892-908. doi 10.1111/eva.12367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang, J., Liu, Q., Luo, K., et al., Cell fusion as the formation mechanism of unreduced gametes in the gynogenetic diploid hybrid fish, Sci. Rep., 2016, vol. 6, no. 31658, pp. 1-12. doi 10.1038/srep31658

    Article  CAS  Google Scholar 

  32. Mason, A.S. and Chris Pires, J., Unreduced gametes: meiotic mishap or evolutionary mechanism?, Trends Genet., 2015, vol. 31, no. 1, pp. 5-10. doi 10.1016/j.tig.2014.09.011

    Article  PubMed  CAS  Google Scholar 

  33. Lutes, A.A., Neaves, W.B., Baumann, D.P., et al., Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards, Nature, 2010, vol. 464, no. 7286, pp. 283-286. doi 10.1038/nature08818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Dawley, R.M. and Bogart, J.B., Evolution and Ecology of Unisexual Vertebrates, Albany: New York State Museum, 1989.

    Google Scholar 

  35. Stenberg, P. and Saura, A., Meiosis and its deviations in polyploid animals, Cytogenet. Genome Res., 2013, vol. 140, nos. 2-4, pp. 185-203. doi 10.1159/000351731

    Article  PubMed  CAS  Google Scholar 

  36. Chinone, A., Nodono, H., and Matsumoto, M., Triploid planarian reproduces truly bisexually with euploid gametes produced through a different meiotic system between sex, Chromosoma, 2014, vol. 123, no. 3, pp. 265-272. doi 10.1007/s00412-013-0449-2

    Article  PubMed  Google Scholar 

  37. Mallet, J., Hybrid speciation, Nature, 2007, vol. 446, no. 7133, pp. 279-283.

    Article  PubMed  CAS  Google Scholar 

  38. Mallet, J., Besansky, N., and Hahn, M.W., How reticulated are species?, Bioessays, 2016, vol. 38, no. 2, pp. 140-149. doi 10.1002/bies.201500149

    Article  PubMed  Google Scholar 

  39. Hegarty, M.J. and Hiscock, S.J., Genomic clues to the evolutionary success of polyploid plants, Curr. Biol., 2008, vol. 18, no. 10, pp. R435-R444. doi 10.1016/j.cub.2008.03.043

    Article  PubMed  CAS  Google Scholar 

  40. Comai, L., Genetic and epigenetic interactions in allopolyploid plants, Plant Mol. Biol., 2000, vol. 43, nos. 2-3, pp. 387-399.

    Article  PubMed  CAS  Google Scholar 

  41. Madlung, A., Polyploidy and its effect on evolutionary success: old questions revisited with new tools, Heredity, 2013, vol. 110, no. 1, pp. 99-104. doi 10.1038/hdy.2012.79

    Article  PubMed  CAS  Google Scholar 

  42. Selmecki, A.M., Maruvka, Y.E., Richmond, P.A., et al., Polyploidy can drive rapid adaptation in yeast, Nature, 2015, vol. 519, no. 7543, pp. 349-352. doi 10.1038/nature14187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lynch, M. and Conery, J.S., The evolutionary fate and consequences of duplicate genes, Science, 2000, vol. 290, no. 5494, pp. 1151-1155.

    Article  PubMed  CAS  Google Scholar 

  44. Taylor, J.S., Van de Peer, Y., and Meyer, A., Revisiting recent challenges to the ancient fish-specific genome duplication hypothesis, Trends Genet., 2001, vol. 17, no. 6, pp. 299-301.

    Article  PubMed  CAS  Google Scholar 

  45. McGrath, C.L., Gout, J.-F., Johri, P., et al., Differential retention and divergent resolution of duplicate genes following whole-genome duplication, Genome Res., 2014, vol. 24, no. 10, pp. 1665-1675. doi 10.1101/gr.173740.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Otto, S.P. and Whitton, J., Polyploid incidence and evolution, Annu. Rev. Genet., 2000, vol. 34, pp. 401-437.

    Article  PubMed  CAS  Google Scholar 

  47. Soltis, D.E. and Soltis, P.S., Molecular data and the dynamic nature of polyploidy, Crit. Rev. Plant Sci., 1993, vol. 12, no. 3, pp. 243-273.

    Article  CAS  Google Scholar 

  48. De Storme, N. and Mason, A., Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance, Curr. Plant Biol., 2014, vol. 1, no. 1, pp. 10-33.

    Article  Google Scholar 

  49. Chester, M., Leitch, A.R., Soltis, P.S., and Soltis, D.E., Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation), Genes, 2010, vol. 1, no. 2, pp. 166-192. doi 10.3390/genes1020166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hollister, J.D., Polyploidy: adaptation to the genomic environment, New Phytol., 2015, vol. 205, no. 3, pp. 1034-1039.

    Article  PubMed  Google Scholar 

  51. Cifuentes, M., Grandont, L., Moore, G., et al., Genetic regulation of meiosis in polyploid species: new insights into an old question, New Phytol., 2010, vol. 186, no. 1, pp. 29-36. doi 10.1111/j.1469-8137.2009.03084.x

    Article  PubMed  CAS  Google Scholar 

  52. Sattler, M.C., Carvalho, C.R., and Clarindo, W.R., The polyploidy and its key role in plant breeding, Planta, 2016, vol. 243, no. 2, pp. 281-296. doi 10.1007/s00425-015-2450-x

    Article  PubMed  CAS  Google Scholar 

  53. Astaurov, B.L., Experimental polyploidy in animals, Annu. Rev. Genet., 1969, vol. 3, no. 1, pp. 99-126.

    Article  Google Scholar 

  54. Kondo, Y., Developmental capacity and chromosome number in the offspring of artificially produced autotetraploids of Rana nigromaculata, Zool. Sci., 2002, vol. 19, no. 8, pp. 877-883.

    Article  PubMed  Google Scholar 

  55. Lutes, A.A., Baumann, D.P., Neaves, W.B., and Baumann, P., Laboratory synthesis of an independently reproducing vertebrate species, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 24, pp. 9910-9915. doi 10.1073/pnas.1102811108

    Article  PubMed  PubMed Central  Google Scholar 

  56. Glover, K.A., Bos, J.B., Urdal, K., et al., Genetic screening of farmed Atlantic salmon escapees demonstrates that triploid fish display reduced migration to freshwater, Biol. Invasions, 2016, vol. 18, no. 5, pp. 1287-1294. doi 10.1007/s10530-016-1066-9

    Article  Google Scholar 

  57. Grandont, L., Jenczewski, E., and Lloyd, A., Meiosis and its deviations in polyploid plants, Cytogenet. Genome Res., 2013, vol. 140, nos. 2-4, pp. 171-184. doi 10.1159/000351730

    Article  PubMed  CAS  Google Scholar 

  58. Stenberg, P. and Saura, A., Cytology of asexual animals,in Lost Sex: The Evolutionary Biology of Parthenogenesis, Springer-Verlag, 2009, pp. 63-74.

    Google Scholar 

  59. Berger, L., Morphology of the F1 generation of various crosses within Rana esculenta-complex, Acta Zool. Cracoviensia, 1968, vol. 13, no. 13, pp. 301-324.

    Google Scholar 

  60. Christiansen, D.G. and Reyer, H.U., From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs, Evolution, 2009, vol. 63, no. 7, pp. 1754-1768. doi 10.1111/j.1558-5646.2009.00673.x

    Article  PubMed  CAS  Google Scholar 

  61. Dedukh, D., Litvinchuk, S., Rosanov, Ju., et al., Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs, PLoS One, 2015, vol. 10, no. 4. e0123304. doi 10.1371/journal.pone. 0123304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Doležálková, M., Sember, A., Marec, F., et al., Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax?, BMC Genet., 2016, vol. 17, no. 100. doi 10.1186/s12863-016-0408-z

  63. Tunner, H.G., Demonstration of the hybrid origin of the common green frog Rana esculenta L., J. Zool. Syst. Evol. Res., 1973, vol. 11, no. 1, pp. 219-233.

    Article  Google Scholar 

  64. Christiansen, D.G., Fog, K., Pedersen, B.V., et al., Reproduction and hybrid load in all-hybrid populations of Rana esculenta water frogs in Denmark, Evolution, 2005, vol. 59, no. 6, pp. 1348-1361.

    Article  PubMed  Google Scholar 

  65. Borkin, L.J., Korshunov, A.V., Lada, G.A., et al., Mass occurrence of polyploid green frogs (Rana esculenta complex) in Eastern Ukraine, Russ. J. Herpetol., 2004, vol. 11, no. 3, pp. 194-213.

    Google Scholar 

  66. Demircan, T. and Berezikov, E., The Hippo pathway regulates stem cells during homeostasis and regeneration of the flatworm Macrostomum lignano, Stem Cells Dev., 2013, vol. 22, no. 15, pp. 2174-2185. doi 10.1089/scd.2013.0006

    Article  PubMed  Google Scholar 

  67. Janssen, T., Vizoso, D.B., Schulte, G., et al., The first multi-gene phylogeny of the Macrostomorpha sheds light on the evolution of sexual and asexual reproduction in basal Platyhelminthes, Mol. Phylogenet. Evol., 2015, vol. 92, no. 1, pp. 82-107. doi 10.1016/j.ympev.2015.06.004

    Article  PubMed  CAS  Google Scholar 

  68. Ladurner, P., Schärer, L., Salvenmoser, W., and Rieger, R.M., A new model organism among the lower Bilateria and the use of digital microscopy in taxonomy of meiobenthic Platyhelminthes: Macrostomum lignano, n. sp. (Rhabditophora, Macrostomorpha), J. Zool. Syst. Evol. Res., 2005, vol. 43, no. 2, pp. 114-126. doi 10.1111/j.1439-0469.2005.00299.x

    Article  Google Scholar 

  69. Marie-Orleach, L., Janicke, T., Vizoso, D., et al., Fluorescent sperm in a transparent worm: validation of a GFP marker to study sexual selection, BMC Evol. Biol., 2014, vol. 30, no. 14, p. 148. doi 10.1186/1471-2148-14-148

    Article  CAS  Google Scholar 

  70. Vellnow, N., Marie-Orleach, L., Zadesenets, K.S., and Schärer, L., Bigger testes increase paternity in a simultaneous harmephrodite, indeoendently of the sperm competition level, J. Evol. Biol., 2018, vol. 31, no. 2, pp. 180-196. doi 10.1111/jeb.13212

    Article  PubMed  CAS  Google Scholar 

  71. Zadesenets, K.S., Ershov, N.I., Berezikov, E., and Rubtsov, N.B., Chromosome evolution in the free-living flatworms: first evidence of intrachromosomal rearrangements in karyotype evolution of Macrostomum lignano (Platyhelminthes, Macrostomida), Genes, 2017, vol. 8, no. 11. e298. doi 10.3390/genes8110298

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 16-34-60027 mol_a_dk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Zadesenets.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadesenets, K.S., Rubtsov, N.B. Genome Duplication in Animal Evolution. Russ J Genet 54, 1125–1136 (2018). https://doi.org/10.1134/S1022795418090168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418090168

Keywords:

Navigation