Russian Journal of Genetics

, Volume 54, Issue 5, pp 562–567 | Cite as

Association of MAOA-uVNTR Polymorphism with Subjective Well-Being in Men

  • A. S. Gureev
  • E. D. Ananieva
  • A. V. Rubanovich
  • R. F. Inglehart
  • E. D. Ponarin
  • S. A. BorinskayaEmail author
Human Genetics


Quality of life and one’s subjective evaluation of one’s own happiness and well-being are the conventional focus of psychology and sociology. However, a genetic factor has recently been found to affect the subjective evaluation of well-being. The contribution of heredity to a personal level of happiness and life satisfaction has been estimated at 30–50% in twin studies. Individual genes associated with these traits have been identified, but the available data are rather discrepant. In this work, alleles of the monoamine oxidase A gene (MAOA) were tested for association with well-being components, such as happiness, health, dangers of living environment, and stress, in Russian men. Trait assessments were based on questionnaires filled out as part of the World Values Survey. It is shown that, among the uVNTR-3R allele carriers, the proportion of men who have high levels of stress, feel unhappy, and live in unsafe environments is lower. The results are discussed in the context of the gene plasticity concept, which provides a possible explanation for how expression of genes related to behavior changes in different environmental conditions.


MAOA gene monoamine oxidase A subjective assessment of life satisfaction World Values Survey 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steptoe, A. and Wardle, J., Enjoying life and living longer, Arch. Int. Med., 2012, vol. 172, no. 3, pp. 273–275.CrossRefGoogle Scholar
  2. 2.
    Bartels, M., Genetics of wellbeing and its components satisfaction with life, happiness, and quality of life: a review and meta-analysis of heritability studies, Behav. Genet., 2015, vol. 45, no. 2, pp. 137–156. doi 10.1007/s10519-015-9713-yCrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Frey, B.S., Happy people live longer, Science, 2011, vol. 331, no. 6017, pp. 542–543. doi 10.1126/science. 1201060CrossRefPubMedGoogle Scholar
  4. 4.
    Kahneman, D. and Deaton, A., High income improves evaluation of life but not emotional well-being, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 38, pp. 16489–16493. doi 10.1073/pnas.1011492107CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Myers, D.G. and Diener, E., Who is happy?, Psychol. Sci., 1995, vol. 6, pp. 10–19.CrossRefGoogle Scholar
  6. 6.
    Bartels, M. and Boomsma, D.I., Born to be happy? The etiology of subjective well-being, Behav. Genet., 2009, vol. 39, no. 6, pp. 605–615. doi 10.1007/s10519-009-9294-8CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rietveld, C.A., Cesarini, D., Benjamin, D.J., et al., Molecular genetics and subjective well-being, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 24, pp. 9692–9697. doi 10.1073/pnas.1222171110CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Matsunaga, M., Isowa, T., Yamakawa, K., et al., Genetic variations in the human cannabinoid receptor gene are associated with happiness, PLoS One, 2014, vol. 9, no. 4. P: e93771. pone.0093771.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fredrickson, B.L., Grewen, K.M., Coffey, K.A., et al., A functional genomic perspective on human wellbeing, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 33, pp. 13684–13689. doi 10.1073/pnas.1305419110CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen, H., Pine, D.S., Ernst, M., et al., The MAOA gene predicts happiness in women, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2013, vol. 40, pp. 122–125. Scholar
  11. 11.
    Sprangers, M.A., Thong, M.S., Bartels, M., et al., Biological pathways, candidate genes, and molecular markers associated with quality-of-life domains: an update, Qual. Life Res., 2014, vol. 23, no. 7, pp. 1997–2013.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Okbay, A., Baselmans, B.M., De Neve, J.E., et al., Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses, Nat. Genet., 2016, vol. 48, no. 6, pp. 624–633. doi 10.1038/ng.3552CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    De Neve, J.E., Christakis, N.A., Fowler, J.H., and Frey, B.S., Genes, economics, and happiness, J. Neurosci. Psychol. Econ., 2012, vol. 5, no. 4, pp. 193–211. Scholar
  14. 14.
    Lan, N.C., Heinzmann, C., Gal, A., et al., Human monoamine oxidase A and B genes map to Xp11.23 and are deleted in a patient with Norrie disease, Genomics, 1989, vol. 4, pp. 552–559. Scholar
  15. 15.
    Brunner, H.G., Nelen, M., Breakefield, X.O., et al., Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A, Science, 1993, vol. 262, pp. 578–580. doi 10.1126/science. 8211186CrossRefPubMedGoogle Scholar
  16. 16.
    Sabol, S.Z., Hu, S., and Hamer, D., A functional polymorphism in the monoamine oxidase A gene promoter, Hum Genet., 1998, vol. 103, no. 3, pp. 273–279.CrossRefPubMedGoogle Scholar
  17. 17.
    Ficks, C.A. and Waldman, I.D., Candidate genes for aggression and antisocial behavior: a meta-analysis of association studies of the 5HTTLPR and MAOAuVNTR, Behav. Genet., 2014, vol. 44, no. 5, pp. 427–444. doi 10.1007/s10519-014-9661-yCrossRefPubMedGoogle Scholar
  18. 18.
    Liu, Z., Huang, L., Luo, X.J., et al., MAOA variants and genetic susceptibility to major psychiatric disorders, Mol. Neurobiol., 2016, vol. 53, no. 7, pp. 4319–4327. doi 10.1007/s12035-015-9374-0CrossRefPubMedGoogle Scholar
  19. 19.
    Reif, A., Weber, H., Domschke, K., et al., Meta-analysis argues for a female-specific role of MAOA-uVNTR in panic disorder in four European populations, Am. J. Med. Genet., Part B, 2012, vol. 159B, no. 7, pp. 786–793. doi 10.1002/ajmg.b.32085CrossRefGoogle Scholar
  20. 20.
    Fan, M., Liu, B., Jiang, T., et al., Meta-analysis of the association between the monoamine oxidase-A gene and mood disorders, Psychiatr. Genet., 2010, vol. 20, no. 1, pp. 1–7. doi 10.1097/YPG.0b013e3283351112CrossRefPubMedGoogle Scholar
  21. 21.
    Rivera, M., Gutiérrez, B., Molina, E., et al., Highactivity variants of the uMAOA polymorphism increase the risk for depression in a large primary care sample, Am. J. Med. Genet., Part B, 2009, vol. 150B, no. 3, pp. 395–402. doi 10.1002/ajmg.b.30829CrossRefGoogle Scholar
  22. 22.
    Meyer-Lindenberg, A., Buckholtz, J.W., Kolachana, B., et al., Neural mechanisms of genetic risk for impulsivity and violence in humans, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 6269–6274.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Verhoeven, F.E., Booij, L., Kruijt, A.W., et al., The effects of MAOA genotype, childhood trauma, and sex on trait and state-dependent aggression, Brain Behav., 2012, vol. 2, no. 6, pp. 806–813. doi 10.1002/brb3.96CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Caspi, A., McClay, J., Moffitt, T.E., et al., Role of genotype in the cycle of violence in maltreated children, Science, 2002, vol. 297, pp. 851–854. doi 10.1126/science. 1072290CrossRefPubMedGoogle Scholar
  25. 25.
    World Values Survey. http://www.worldvaluessurvey. org.Google Scholar
  26. 26.
    Cohen, S., Kamarck, T., and Mermelstein, R., A global measure of perceived stress, J. Health Soc. Behav., 1983, vol. 24, pp. 385–396.CrossRefPubMedGoogle Scholar
  27. 27.
    Shkolnikova, M., Shalnova, S., Shkolnikov, V.M., et al., Biological mechanisms of disease and death in Moscow: rationale and design of the survey on Stress Aging and Health in Russia (SAHR), BMC Public. Health, 2009, vol. 9, p. 293. doi 10.1186/1471-2458-9-293CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Glei, D.A., Goldman, N., Shkolnikov, V.M., et al., Perceived stress and biological risk: is the link stronger in Russians than in Taiwanese and Americans?, Stress, 2013, vol. 16, no. 4, pp. 411–420. doi 10.3109/10253890.2013.789015CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Roff, D.A. and Bentzen, P., The statistical analysis of mitochondrial DNA: χ2 and problem of small samples, Mol. Biol. Evol., 1989, vol. 6, pp. 539–545. https://.org/. doi 10.1093/oxfordjournals.molbev. a040568PubMedGoogle Scholar
  30. 30.
    Elston, R.C. and Forthofer, R., Testing for Hardy—Weinberg equilibrium in small samples, Biometrics, 1977, vol. 33, pp. 536–542. doi 10.2307/2529370CrossRefGoogle Scholar
  31. 31.
    Abramson, J.H., WINPEPI (PEPI-for-Windows): computer programs for epidemiologists, Epidemiol. Perspect. Innovations, 2004, vol. 1, p. 6.CrossRefGoogle Scholar
  32. 32.
    Cohen, S. and Janicki-Deverts, D., Who’s stressed? Distributions of psychological stress in the United States in probability samples from 1983, 2006, and 2009, J. Appl. Soc. Psychol., 2012, vol. 42, pp. 1320–1334. doi 10.1111/j.1559-1816.2012.00900.xCrossRefGoogle Scholar
  33. 33.
    Kim-Cohen, J., Caspi, A., Taylor, A., et al., MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis, Mol. Psychiatry, 2006, vol. 11, pp. 903–913. doi 10.1038/ Scholar
  34. 34.
    Belsky, J. and Pluess, M., The nature (and nurture?) of plasticity in early human development, Perspect. Psychol. Sci., 2009, vol. 4, no. 4, pp. 345–351. doi 10.1111/j.1745-6924.2009.01136.xCrossRefPubMedGoogle Scholar
  35. 35.
    Caspi, A., Sugden, K., Moffitt, T.E., et al., Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene, Science, 2003, vol. 301, no. 5631, pp. 386–389. doi 10.1126/science.1083968CrossRefPubMedGoogle Scholar
  36. 36.
    Koenen, K.C., Aiello, A.E., Bakshis, E., et al., Modification of the association between serotonin transporter genotype and risk of posttraumatic stress disorder in adults by county-level social environment, Am. J. Epidemiol., 2009, vol. 169, no. 6, pp. 704–711. doi 10.1093/aje/kwn397CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Gureev
    • 1
  • E. D. Ananieva
    • 1
  • A. V. Rubanovich
    • 1
  • R. F. Inglehart
    • 2
    • 3
  • E. D. Ponarin
    • 2
  • S. A. Borinskaya
    • 1
    Email author
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsSt. PetersburgRussia
  3. 3.University of MichiganAnn ArborUnited States

Personalised recommendations