Skip to main content
Log in

Schizophrenia Genetics

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Schizophrenia is a complex multifactorial disease, in most cases manifested as a result of the interaction of genetic and psychological factors, as well as certain environmental conditions. However, genetic factors certainly play a determining role in the predisposition to schizophrenia. The coefficient of heritability of schizophrenia is about 80%, which is typical of the most highly inherited multifactorial diseases. This review presents the results of the latest world studies of genetic factors in the development of schizophrenia, including epigenetic, genome-wide association studies, and next generation sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaur, H., Jajodia, A., Grover, S., et al., Synergistic association of PI4KA and GRM3 genetic polymorphisms with poor antipsychotic response in south Indian schizophrenia patients with low severity of illness, Am. J. Med. Genet., Part B, 2014, vol. 165, no. 8, pp. 635–646. doi 10.1002/ajmg.b.32268

    Article  CAS  Google Scholar 

  2. Bosia, M., Pigoni, A., and Cavallaro, R., Genomics and epigenomics in novel schizophrenia drug discovery: translating animal models to clinical research and back, Expert Opin. Drug Disc., 2015, vol. 10, no. 2, pp. 125–139. doi 10.1517/17460441.2015.976552

    Article  CAS  Google Scholar 

  3. Cardno, A.G. and Gottesman, I.I., Twin studies of schizophrenia: from bow–and–arrow concordances to star wars Mx and functional genomics, Am. J. Med. Genet., 2000, vol. 97, no. 1, pp. 12–17.

    Article  PubMed  CAS  Google Scholar 

  4. Perez, V.B., Roach, B.J., Woods, S.W., et al., Early auditory gamma-band responses in patients at clinical high risk for schizophrenia, Clin. Neurophysiol., 2013, vol. 62. suppl., p. 147.

    Google Scholar 

  5. Hall, M.H., Schulze, K., Rijsdijk, F., et al., Heritability and reliability of P300, P50 and duration mismatch negativity, Behav. Genet., 2006, vol. 36, no. 6, pp. 845–857. doi 10.1007/s10519-006-9091-6

    Article  PubMed  Google Scholar 

  6. Hall, M.H., Taylor, G., Sham, P., et al., The early auditory gamma-band response is heritable and a putative endophenotype of schizophrenia, Schizophr. Bull., 2011, vol. 37, pp. 778–787. doi 10.1093/schbul/sbp134

    Article  PubMed  Google Scholar 

  7. Bramon, E., McDonald, C., Croft, R.J., et al., Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study, Neuroimage, 2005, vol. 27, no. 4, pp. 960–968. doi 10.1016/j.neuroimage. 2005.05.022

    Article  PubMed  Google Scholar 

  8. Turetsky, B.I., Kohler, C.G., Indersmitten, T., et al., Facial emotion recognition in schizophrenia: when and why does it go awry?, Schizophr. Res., 2007, vol. 94, no. 1, pp. 253–263. doi 10.1016/j.schres.2007.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ingraham, L.J. and Kety, S.S., Adoption studies of schizophrenia, Am. J. Med. Genet., 2000, vol. 97, no. 1, pp. 18–22.

    Article  PubMed  CAS  Google Scholar 

  10. Thapar, A., Langley, K., Asherson, P., and Gill, M., Gene–environment interplay in attention-deficit hyperactivity disorder and the importance of a developmental perspective, Br. J. Psychiatry, 2007, vol. 190, no. 1, pp. 1–3. doi 10.1192/bjp.bp.106.027003

    Article  PubMed  Google Scholar 

  11. Allen, N.C., Bagade, S., McQueen, M.B., et al., Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database, Nat. Genet., 2008, vol. 40, no. 7, pp. 827–834. doi 10.1038/ng.171

    Article  PubMed  CAS  Google Scholar 

  12. Chong, V.Z., Thompson, M., Beltaifa, S., et al., Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients, Schizophr. Res., 2008, vol. 100, no. 1, pp. 270–280. doi 10.1016/j.schres.2007

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hahn, C.G., Wang, H.Y., Cho, D.S., et al., Altered neuregulin 1–erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia, Nat. Med., 2006, vol. 12, no. 7, pp. 824–828. doi 10.1038/nm1418

    Article  PubMed  CAS  Google Scholar 

  14. Zhao, C., Xu, Z., Chen, J., et al., Two isoforms of GABAA receptor β2 subunit with different electrophysiological properties: differential expression and genotypical correlations in schizophrenia, Mol. Psychiatry, 2006, vol. 11, no. 12, pp. 1092–1105. doi 10.1038/sj.mp.4001899

    Article  PubMed  CAS  Google Scholar 

  15. Li, D. and He, L., Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis, Genet. Med., 2007, vol. 9, no. 1, pp. 4–8. doi 10.109701.gim.0000250507.96760.4b

    Article  PubMed  CAS  Google Scholar 

  16. Martucci, L., Wong, A.H., De Luca, V., et al., Nmethyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: polymorphisms and mRNA levels, Schizophr. Res., 2006, vol. 84, no. 2, pp. 214–221. doi 10.1016/j.schres. 2006.02.001

    Article  PubMed  Google Scholar 

  17. Shi, J., Gershon, E.S., and Liu, C., Genetic associations with schizophrenia: meta-analyses of 12 candidate genes, Schizophr. Res., 2008, vol. 104, no. 1, pp. 96–107. doi 10.1016/j.schres.2008.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stefansson, H., Ophoff, R.A., Steinberg, S., et al., Common variants conferring risk of schizophrenia, Nature, 2009, vol. 460, no. 7256, pp. 744–747. doi 10.1038/nature08186

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang, Z., Wei, J., Zhang, X., et al., A review and reevaluation of an association between the NOTCH4 locus and schizophrenia, Am. J. Med. Genet., Part B, 2006, vol. 141, no. 8, pp. 902–906. doi 10.1002/ajmg.b.30383

    Article  Google Scholar 

  20. Etherton, M.R., Blaiss, C.A., Powell, C.M., and Südhof, T.C., Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 42, pp. 17998–18003. doi 10.1073/pnas.0910297106

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fatemi, S.H., King, D.P., Reutiman, T.J., et al., PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia, Schizophr. Res., 2008, vol. 101, no. 1, pp. 36–49. doi 10.1016/j.schres. 2008.01.029

    Article  PubMed  Google Scholar 

  22. Kähler, A.K., Otnaess, M.K., Wirgenes, K.V., et al., Association study of PDE4B gene variants in Scandinavian schizophrenia and bipolar disorder multicenter case–control samples, Am. J. Med. Genet., Part B, 2010, vol. 153, no. 1, pp. 86–96. doi 10.1002/ajmg.b.30958

    Google Scholar 

  23. Gogos, J.A., Santha, M., Takacs, Z., et al., The gene encoding proline dehydrogenase modulates sensorimotor gating in mice, Nat. Genet., 1999, vol. 21, no. 4, pp. 434–439. doi 10.1038/7777

    Article  PubMed  CAS  Google Scholar 

  24. Guidotti, A., Auta, J., Davis, J.M., et al., Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study, Arch. Gen. Psychiatry, 2000, vol. 57, no. 11, pp. 1061–1069.

    Article  PubMed  CAS  Google Scholar 

  25. Lipska, B.K., Peters, T., Hyde, T.M., et al., Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs, Hum. Mol. Genet., 2006, vol. 15, no. 8, pp. 1245–1258. doi 10.1093/hmg/ddl040

    Article  PubMed  CAS  Google Scholar 

  26. Sherrington, R., Brynjolfsson, J., Petursson, H., et al., Localization of a susceptibility locus for schizophrenia on chromosome 5, Nature, 1988, vol. 336, no. 6195, pp. 164–167. doi 10.1038/336164a0

    Article  PubMed  CAS  Google Scholar 

  27. Brzustowicz, L.M., Hodgkinson, K.A., Chow, E.W., et al., Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22, Science, 2000, vol. 288, no. 5466, pp. 678–682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zheng, Y., Wang, X., Gu, N., et al., A two-stage linkage analysis of Chinese schizophrenia pedigrees in 10 target chromosomes, Biochem. Biophys. Res. Commun., 2006, vol. 342, no. 4, pp. 1049–1057. doi 10.1016/j.bbrc.2006.02.041

    Article  PubMed  CAS  Google Scholar 

  29. Blouin, J.L., Dombroski, B.A., Nath, S.K., et al., Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21, Nat. Genet., 1998, vol. 20, no. 1, pp. 70–73. doi 10.1038/1734

    Article  PubMed  CAS  Google Scholar 

  30. Gurling, H.M.D., Kalsi, G., Brynjolfson, J., et al., Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23, Am. J. Hum. Genet., 2001, vol. 68, no. 3, pp. 661–673. doi 10.1086/318788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Brzustowicz, L.M., Honer, W.G., Chow, E.W., et al., Linkage of familial schizophrenia to chromosome 13q32, Am. J. Hum. Genet., 1999, vol. 65, no. 4, pp. 1096–1103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Moises, H.W., Yang, L., Kristbjarnarson, H., et al., An international two-stage genome-wide search for schizophrenia susceptibility genes, Nat Genet., 1995, vol. 11, no. 3, pp. 321–324. doi 10.1038/ng1195-321

    Article  PubMed  CAS  Google Scholar 

  33. Maziade, M., Roy, M.A., Rouillard, E., et al., A search for specific and common susceptibility loci for schizophrenia and bipolar disorder: a linkage study in 13 target chromosomes, Mol. Psychiatry, 2001, vol. 6, no. 6, pp. 684–693. doi 10.1038/sj.mp.4000915

    Article  PubMed  CAS  Google Scholar 

  34. Badner, J.A. and Gershon, E.S., Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia, Mol. Psychiatry, 2002, vol. 7, no. 4, pp. 405–411. doi 10.1038/sj.mp.4001012

    Article  PubMed  CAS  Google Scholar 

  35. Lewis, C.M., Levinson, D.F., Wise, L.H., et al., Genome scan meta-analysis of schizophrenia and bipolar disorder: 2. Schizophrenia, Am. J. Hum. Genet., 2003, vol. 73, no. 1, pp. 34–48. doi 10.1086/376549

    CAS  Google Scholar 

  36. Greenwood, T.A., Swerdlow, N.R., Gur, R.E., et al., Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia, Am. J. Psychiatry, 2013, vol. 170, no. 5, pp. 521–532. doi 10.1176/appi.ajp.2012.12020186

    Article  PubMed  Google Scholar 

  37. Abdolmaleky, H.M., Yaqubi, S., Papageorgis, P., et al., Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder, Schizophr. Res., 2011, vol. 129, no. 2, pp. 183–190. doi 10.1016/j.schres.2011.04.007

    Article  PubMed  Google Scholar 

  38. Matrisciano, F., Tueting, P., Dalal, I., et al., Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice, Neuropharmacology, 2013, vol. 68, pp. 184–194. doi 10.1016/j.neuropharm.2012.04.013

    Article  PubMed  CAS  Google Scholar 

  39. Gareeva, A.E., Zakirov, D.F., and Khusnutdinova, E.K., Association polymorphic variants of GRIN2B gene with paranoid schizophrenia and response to typical neuroleptics in Russians and Tatars from Bashkortostan Republic, Russ. J. Genet., 2013, vol. 49, no. 9, pp. 962–968. https://doi.org/10.1134/S1022795413080024.

    Article  CAS  Google Scholar 

  40. Gareeva, A.E., Zakirov, D.F., Valinurov, R.G., and Khusnutdinova, E.K., Polymorphism of RGS2 gene: genetic markers of risk for schizophrenia and pharmacogenetic markers of typical neuroleptics efficiency, Mol. Biol. (Moscow), 2013, vol. 47, no. 6, pp. 814–820. doi 10.1134/S0026893313060046

    Article  CAS  Google Scholar 

  41. Galaktionova, D.Y., Gareeva, A.E., Khusnutdinova, E.K., and Nasedkina, T.V., Association of SLC18A1, TPH1, and RELN gene polymorphisms with risk of paranoid schizophrenia, Mol. Biol. (Moscow), 2014, vol. 48, no. 4, pp. 546–555 doi 10.1134/S0026893314030042

    CAS  Google Scholar 

  42. Gareeva, A.E. and Khusnutdinova, E.K., Glutamate receptors genes polymorphism and the risk of paranoid schizophrenia in Russians and Tatars from the Republic of Bashkortostan, Mol. Biol. (Moscow), 2014, vol. 48, no. 5, pp. 671–680. doi 10.1134/S0026893314050033

    Article  CAS  Google Scholar 

  43. Gareeva, A.E., Traks, T., Koks, S., and Khusnutdinova, E.K., The role of neurotrophins and neurexins genes in the risk of paranoid schizophrenia in Russians and Tatars, Russ. J. Genet., 2015, vol. 51, no. 7, pp. 683–694. doi 10.1134/S102279541506006X

    Article  CAS  Google Scholar 

  44. Gareeva, A.E., Kinyasheva, K.O., Galaktionova, D.Y., et al., Polymorphism of brain neurotransmitter system genes: search for pharmacogenetic markers of haloperidol efficiency in Russians and Tatars, Mol. Biol. (Moscow), 2015, vol. 49, no. 6, pp. 858–866. doi 10.1134/S0026893315050076

    Article  CAS  Google Scholar 

  45. Gatt, J.M., Burton, K.L., Williams, L.M., et al., Specific and common genes implicated across major mental disorders: a review of meta-analysis studies, J. Psychiatr. Res., 2015, vol. 60, pp. 1–13. doi 10.1016/j.jpsychires. 2014.09.014

    Article  PubMed  Google Scholar 

  46. Mah, S., Nelson, M.R., Delisi, L.E., et al., Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia, Mol. Psychiatry, 2006, vol. 11, no. 5, pp. 471–478.

    Article  PubMed  CAS  Google Scholar 

  47. Tamagnone, L., Artigiani, S., Chen, H., et al., Plexins are a large family of receptors for transmembrane, secreted, and GPI–anchored semaphorins in vertebrates, Cell, 1999, vol. 99, no. 1, pp. 71–80.

    Article  PubMed  CAS  Google Scholar 

  48. Murakami, Y., Suto, F., Shimizu, M., et al., Differential expression of plexin-A subfamily members in the mouse nervous system, Dev. Dyn., 2001, vol. 220, no. 3, pp. 246–258. doi 10.1002/1097-0177(20010301)220:3< 246::AID-DVDY1112>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  49. Need, A.C., Ge, D., Weale, M.E., et al., A genome wide investigation of SNPs and CNVs in schizophrenia, PLoS Genet., 2009, vol. 5, no. 2. e1000373. doi 10.1371/journal.pgen.1000373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Shi, J., Levinson, D.F., Duan, J., et al., Common variants on chromosome 6p22.1 are associated with schizophrenia, Nature, 2009, vol. 460, no. 7256, pp. 753–757. doi 10.1038/nature08192

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Purcell, S.M., Wray, N.R., Stone, J.L., et al., Common polygenic variation contributes to risk of schizophrenia and bipolar disorder, Nature, 2009, vol. 460, no. 7256, pp. 748–752. doi 10.1038/nature08185

    PubMed  CAS  Google Scholar 

  52. Ikeda, M., Aleksic, B., Kinoshita, Y., et al., Genomewide association study of schizophrenia in a Japanese population, Biol. Psychiatry, 2011, vol. 69, no. 5, pp. 472–478. doi 10.1016/j.biopsych.2010.07.010

    Article  PubMed  Google Scholar 

  53. Walters, J.T., Rujescu, D., Franke, B., et al., The role of the major histocompatibility complex region in cognition and brain structure: a schizophrenia GWAS follow-up, Am. J. Psychiatry, 2013, vol. 170, no. 8, pp. 877–885. doi 10.1176/appi.ajp.2013.12020226

    Article  PubMed  Google Scholar 

  54. Chen, Y., Tian, L., Zhang, F., et al., Myosin Vb gene is associated with schizophrenia in Chinese Han population, Psychiatry Res., 2013, vol. 207, no. 1, pp. 13–18. doi 10.1016/j.psychres.2013.02.026

    Article  PubMed  CAS  Google Scholar 

  55. Ripke, S., Sanders, A.R., Kendler, K.S., et al., Genome-wide association study identifies five new schizophrenia loci: Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, Nat. Genet., 2011, vol. 43, no. 10, pp. 969–976. doi 10.1038/ng.940

    Article  CAS  Google Scholar 

  56. Giusti-Rodríguez, P. and Sullivan, P.F., The genomics of schizophrenia: update and implications, J. Clin. Invest., 2013, vol. 123, no. 11, pp. 4557–4563. doi 10.1172/JCI66031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Athanasiu, L., Mattingsdal, M., Kahler, A.K., et al., Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort, J. Psychiatr. Res., 2010, vol. 44, no. 12, pp. 748–753. doi 10.1016/j.jpsychires.2010.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  58. Foong, J., Symms, M.R., Barker, G.J., et al., Neuropathological abnormalities in schizophrenia: evidence from magnetization transfer imaging, Brain, 2001, vol. 124, no. 5, pp. 882–892.

    Article  PubMed  CAS  Google Scholar 

  59. Bernstein, H.G., Steiner, J., and Bogerts, B., Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy, Expert Rev. Neurother., 2009, vol. 9, no. 7, pp. 1059–1071. doi 10.1586/ern.09.59

    Article  PubMed  CAS  Google Scholar 

  60. Simper, R., Walker, M.A., Black, G., et al., The relationship between callosal axons and cortical neurons in the planum temporale: alterations in schizophrenia, Neurosci. Res., 2011, vol. 71, no. 4, pp. 405–410. doi 10.1016/j.neures.2011.08.007

    Article  PubMed  CAS  Google Scholar 

  61. Tkachev, D., Mimmack, M.L., Ryan, M.M., et al., Oligodendrocyte dysfunction in schizophrenia and bipolar disorder, Lancet, 2003, vol. 362, no. 9386, pp. 798–805.

    Article  PubMed  CAS  Google Scholar 

  62. Cruz, D.A., Weaver, C.L., Lovallo, E.M., et al., Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia, Neuropsychopharmacology, 2009, vol. 34, no. 9, pp. 2112–2124. doi 10.1038/npp.2009.36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Konrad, A. and Winterer, G., Disturbed structural connectivity in schizophrenia–primary factor in pathology or epiphenomenon?, Schizophr. Bull., 2008, vol. 34, no. 1, pp. 72–92.

    Article  PubMed  Google Scholar 

  64. Roussos, P. and Haroutunian, V., Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities, Front. Cell Neurosci., 2014, vol. 8, p. 5. doi 10.3389/fncel.2014.00005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tesli, M., Koefoed, P., Athanasiu, L., et al., Association analysis of ANK3 gene variants in Nordic bipolar disorder and schizophrenia case–control samples, Am. J. Med. Genet., Part B, 2011, vol. 156, no. 8, pp. 969–974. doi 10.1002/ajmg.b.31244

    Article  CAS  Google Scholar 

  66. Krug, A., Witt, S.H., Backes, H., et al., A genome-wide supported variant in CACNA1C influences hippocampal activation during episodic memory encoding and retrieval, Eur. Arch. Psychiatry Clin. Neurosci., 2013, vol. 264, no. 2, pp. 103–110. doi 10.1007/s00406-013-0428-x

    Article  PubMed  Google Scholar 

  67. Huang, L., Mo, Y., Sun, X., et al., The impact of CACNA1C allelic variation on regional gray matter volume in Chinese population, Am. J. Med. Genet., Part B, 2016, vol. 171, no. 3, pp. 396–401. doi 10.1002/ajmg. b.32418

    Article  CAS  Google Scholar 

  68. Chen, X., Lee, G., Maher, B.S., et al., GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia, Mol. Psychiatry, 2011, vol. 16, no. 11, pp. 1117–1129. doi 10.1038/mp.2010.96

    Article  PubMed  CAS  Google Scholar 

  69. Liou, Y.J., Wang, H.H., Lee, M.T., et al., Genomewide association study of treatment refractory schizophrenia in Han Chinese, PLoS One, 2012, vol. 7, no. 3. e33598. doi 10.1371/journal.pone.0033598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Fanous, A.H., Zhou, B., Aggen, S.H., et al., Genomewide association study of clinical dimensions of schizophrenia: polygenic effect on disorganized symptoms, Am. J. Psychiatry, 2012, vol. 169, no. 12, pp. 1309–1317. doi 10.1176/appi.ajp.2012.12020218

    Article  PubMed  PubMed Central  Google Scholar 

  71. O’Donovan, M.C., Craddock, N., Norton, N., et al., Identification of loci associated with schizophrenia by genome-wide association and follow-up, Nat. Genet., 2008, vol. 40, no. 9, pp. 1053–1055. doi 10.1038/ng.201

    Article  PubMed  CAS  Google Scholar 

  72. Lee, K.W., Woon, P.S., Teo, Y.Y., et al., Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt?, Neurosci. Biobehav. Rev., 2012, vol. 36, no. 1, pp. 556–571. doi 10.1016/j.neubiorev.2011.09.001

    Article  PubMed  CAS  Google Scholar 

  73. Ripke, S., Neale, B.M., Corvin, A., et al., Biological insights from 108 schizophrenia-associated genetic loci, Nature, 2014, vol. 511, no. 7510, p. 421. doi 10.1038/nature13595

    Article  PubMed Central  CAS  Google Scholar 

  74. Zhang, Y., Fan, M., Wang, Q., et al., Polymorphisms in microRNA genes and genes involving in NMDAR signaling and schizophrenia: a case–control study in Chinese Han population, Sci. Rep., 2015, vol. 5. doi 10.1038/srep12984

  75. Hall, J., Trent, S., Thomas, K.L., et al., Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity, Biol. Psychiatry, 2015, vol. 77, no. 1, pp. 52–58. doi 10.1016/j.biopsych.2014.07.011

    Article  PubMed  CAS  Google Scholar 

  76. Loh, P.R., Bhati, G., Gusev, A., et al., Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis, Nat. Genet., 2015, vol. 47, no. 12, pp. 1385–1392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chanock, S.J., Manolio, T., Boehnke, M., et al., Replicating genotype–phenotype associations, Nature, 2007, vol. 447, no. 7, pp. 655–660. doi 10.1038/447655a

    Article  PubMed  CAS  Google Scholar 

  78. Wray, N.R., Lee, S.H., Mehta, D., et al., Research review: polygenic methods and their application to psychiatric traits, J. Child Psychol. Psychiatry, 2014, vol. 55, no. 10, pp. 1068–1087. doi 10.1111/jcpp.12295

    Article  PubMed  Google Scholar 

  79. Bassett, A.S., Scherer, S.W., and Brzustowicz, L.M., Copy number variations in schizophrenia: critical review and new perspectives on concepts of genetics and disease, Am. J. Psychiatry, 2010, vol. 167, no. 8, pp. 899–914. doi 10.1176/appi.ajp.2009.09071016

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kirov, G., Grozeva, D., Norton, N., et al., Support for the involvement of large copy number variants in the pathogenesis of schizophrenia, Hum. Mol. Genet., 2009, vol. 18, no. 8, pp. 1497–1503. doi 10.1093/hmg/ddp043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ripke, S., O’Dushlaine, C., Chambert, K., et al., Genome-wide association analysis identifies 13 new risk loci for schizophrenia, Nat. Genet., 2013, vol. 45, no. 10, pp. 1150–1159. doi 10.1038/ng.2742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Xu, B., Roos, J.L., Dexheimer, P., et al., Exome sequencing supports a de novo mutational paradigm for schizophrenia, Nat. Genet., 2011, vol. 43, no. 9, pp. 864–868. doi 10.1038/ng.902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gulsuner, S., Walsh, T., Watts, A.C., et al., Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network, Cell, 2013, vol. 154, no. 3, pp. 518–529. doi 10.1016/j.cell.2013.06.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. McCarthy, S.E., Gillis, J., Kramer, M., et al., De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability, Mol. Psychiatry, 2014, vol. 19, no. 6, pp. 652–658. doi 10.1038/mp.2014.29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Fromer, M., Pocklington, A.J., Kavanagh, D.H., et al., De novo mutations in schizophrenia implicate synaptic networks, Nature, 2014, vol. 506, no. 7487, pp. 179–184. doi 10.1038/nature12929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Purcell, S.M., Moran, J.L., Fromer, M., et al., A polygenic burden of rare disruptive mutations in schizophrenia, Nature, 2014, vol. 506, no. 7487, pp. 185–190. doi 10.1038/nature12975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Singh, G., Talwar, I., Sharma, R., et al., Analysis of ANKKI (rs1800497) and DRD2 (rs1079597, rs1800498) variants in five ethnic groups from Punjab, North-West India, Gene, 2016, vol. 584, no. 1, pp. 69–74. doi 10.1016/j.gene.2016.03.009

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gareeva.

Additional information

Original Russian Text © A.E. Gareeva, E.K. Khusnutdinova, 2018, published in Genetika, 2018, Vol. 54, No. 6, pp. 585–596.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gareeva, A.E., Khusnutdinova, E.K. Schizophrenia Genetics. Russ J Genet 54, 593–603 (2018). https://doi.org/10.1134/S1022795418050046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418050046

Keywords

Navigation