Skip to main content
Log in

Identification and Expression Analysis of the YABBY1 Gene in Wild Tomato Species

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The YABBY1 genes were identified in one cultivated and ten wild tomato species of the Lycopersicon section of the Solanum genus. The structural analysis of genes and encoded proteins was carried out, and the YABBY1 interspecies functional conservation in tomato was proposed. It was shown that the YABBY1 gene sequence can be used for phylogenetic dividing of tomatoes into self- and cross-pollinated species, as well as green- and red-fruited species. The significant YABBY1 expression level was detected in S. peruvianum fruits, indicating the possibility of abaxial properties preservation in the fruit skin. The obtained data confirmed the conservation of the YABBY1-mediated organ polarity control during the process of the evolutionary diversification and domestication of tomato species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Cronk, Q.C.B., Plant evolution and development in a post-genomic context, Nat. Rev. Genet., 2001, vol. 2, no. 8, pp. 607–619. doi 10.1038/35084556

    Article  PubMed  CAS  Google Scholar 

  2. Stewart, W.N. and Rothwell, G.W., Paleobotany and the Evolution of Plants, New York: Cambridge University Press, 1993, vol. 12, 2nd ed.

  3. Bowman, J.L., Eshed, Y., and Baum, S.F., Establishment of polarity in angiosperm lateral organs, Trends Genet., 2002, vol. 18, no. 3, pp. 134–141. doi 10.1016/S0168-9525(01)02601-4

    Article  PubMed  CAS  Google Scholar 

  4. Becker, A., Winter, K.U., Meyer, B., et al., MADSBox gene diversity in seed plants 300 million years ago, Mol. Biol. Evol., 2000, vol. 17, no. 10, pp. 1425–1434.

    Article  PubMed  CAS  Google Scholar 

  5. Husbands, A.Y., Chitwood, D.H., Plavskin, Y., and Timmermans, M.C., Signals and prepatterns: new insights into organ polarity in plants, Genes Dev., 2009, vol. 23, no. 17, pp. 1986–1997. doi 10.1101/gad. 1819909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yamaguchi, T., Nukazuka, A., and Tsukaya, H., Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development, Plant Cell Physiol., 2012, vol. 53, no. 7, pp. 1180–1194. doi 10.1093/pcp/pcs074

    Article  PubMed  CAS  Google Scholar 

  7. Meyerowitz, E.M., Genetic control of cell division patterns in developing plants, Cell, 1997, vol. 88, no. 3, pp. 299–308. doi 10.1016/S0092-8674(00)81868-1

    Article  PubMed  CAS  Google Scholar 

  8. Floyd, S.K. and Bowman, J.L., The ancestral developmental tool kit of land plants, Int. J. Plant Sci., 2007, vol. 168, no. 1, pp. 1–35. doi 10.1086/509079

    Article  CAS  Google Scholar 

  9. Yamada, T., Yokota, S., Hirayama, Y., et al., Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms, Plant J., 2011, vol. 67, no. 1, pp. 26–36. doi 10.1111/j.1365-313X.2011.04570.x

    Article  PubMed  CAS  Google Scholar 

  10. Yang, C., Ma, Y., and Li, J., The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway, J. Exp. Bot., 2016, vol. 67, no. 18, pp. 5545–5556. doi 10.1093/jxb/erw319

    Article  PubMed  CAS  Google Scholar 

  11. Bowman, J.L., The YABBY gene family and abaxial cell fate, Curr. Opin. Plant Biol., 2000, vol. 3, no. 1, pp. 17–22.

    Article  PubMed  CAS  Google Scholar 

  12. Bartholmes, C., Hidalgo, O., and Gleissberg, S., Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae), Plant Biol. (Stuttgart), 2012, vol. 14, no. 1, pp. 11–23. doi 10.1111/j.1438-8677.2011.00486.x

    CAS  Google Scholar 

  13. Chen, Q., Atkinson, A., Otsuga, D., et al., The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation, Development, 1999, vol. 126, no. 12, pp. 2715–2726.

    PubMed  CAS  Google Scholar 

  14. Sawa, S., Ito, T., Shimura, Y., and Okada, K., FILAMENTOUS FLOWER controls the formation and development of Arabidopsis inflorescences and floral meristems, Plant Cell, 1999, vol. 11, no. 1, pp. 69–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Siegfried, K.R., Eshed, Y., Baum, S.F., et al., Members of the YABBY gene family specify abaxial cell fate in Arabidopsis, Development, 1999, vol. 126, pp. 4117–4128.

    PubMed  CAS  Google Scholar 

  16. Finet, C., Floyd, S.K., Conway, S.J., et al., Evolution of the YABBY gene family in seed plants, Evol. Dev., 2016, vol. 18, no. 2, pp. 116–126. doi 10.1111/ede.12173

    Article  PubMed  Google Scholar 

  17. Bowman, J.L. and Smyth, D.R., CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains, Development, 1999, vol. 126, pp. 2387–2396.

    PubMed  CAS  Google Scholar 

  18. Kanaya, E., Nakajima, N., and Okada, K., Nonsequence-specific DNA binding by the FILAMENTOUS FLOWER protein from Arabidopsis thaliana is reduced by EDTA, J. Biol. Chem., 2002, vol. 277, no. 14, pp. 11957–11964. doi 10.1074/jbc.M108889200

    Article  PubMed  CAS  Google Scholar 

  19. Peralta, I.E., Spooner, D.M., and Knapp, S., Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae), in Systematic Botany Monographs American Society of Plant Taxonomists, USA, 2008, vol. 84.

  20. Sarojam, R., Sapp, P.J., Goldshmidt, A., et al., Differentiating Arabidopsis shoots from leaves by combined YABBY activities, Plant Cell, 2010, vol. 22, no. 7, pp. 2113–2130. doi 10.1105/tpc.110.075853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Huang, Z., Van Houten, J., Gonzalez, G., et al., Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato, Mol. Genet. Genomics, 2013, vol. 288, nos. 3-4, pp. 111–129. doi 10.1007/s00438-013-0733-0

    Article  PubMed  CAS  Google Scholar 

  22. Filyushin, M.A., Reshetnikova, N.M., Kochieva, E.Z., and Skryabin, K.G., Intraspecific variability of ITS sequences in the parasitic plant Monotropa hypopitys L. from the European Russian populations, Russ. J. Genet., 2015, vol. 51, no. 11, pp. 1149–1152. doi 10.1134/S102279541511006X

    Article  CAS  Google Scholar 

  23. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870–1874. doi 10.1093/molbev/msw054

    Article  PubMed  CAS  Google Scholar 

  24. Grantham, R., Amino acid difference formula to help explain protein evolution, Science, 1974, vol. 185, pp. 862–864.

    Article  PubMed  CAS  Google Scholar 

  25. Choi, Y., Sims, G.E., Murphy, S., et al., Predicting the functional effect of amino acid substitutions and indels, PLoS One, 2012, vol. 7, no. 10. e46688. doi 10.1371/journal.pone.0046688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kelley, L.A., Mezulis, S., Yates, C.M., et al., The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc., 2015, vol. 10, no. 6, pp. 845–858. doi 10.1038/nprot. 2015.053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kozlowski, L.P., IPC—Isoelectric Point Calculator, Biol. Direct., 2016, vol. 11, no. 1, p. 55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Expósito-Rodríguez, M., Borges, A.A., Borges-Pérez, A., and Pérez, J.A., Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process, BMC Plant Biol., 2008, vol. 8, no. 131, pp. 1–12.

    Google Scholar 

  29. Gangelhoff, T.A., Mungalachetty, P.S., Nix, J.C., and Churchill, M.E., Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A, Nucleic Acids Res., 2009, vol. 37, no. 10, pp. 3153–3164. doi 10.1093/nar/gkp157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hasegawa, M., Kishino, H., and Yano, T., Dating of human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol., 1985, vol. 22, no. 2, pp. 160–174.

    Article  PubMed  CAS  Google Scholar 

  31. Tamura, K., Estimation of the number of nucleotide substitutions when there are strong transition—transversion and G+C content biases, Mol. Biol. Evol., 1992, vol. 9, no. 4, pp. 678–687.

    PubMed  CAS  Google Scholar 

  32. Knapp, S. and Peralta, I.E., The tomato (Solanum lycopersicum L., Solanaceae) and its botanical relatives, in The Tomato Genome, Compendium of Plant Genomes, Causse, M., Eds., Berlin: Springer-Verlag, 2016.

    Google Scholar 

  33. Pease, J.B., Haak, D.C., Hahn, M.W., and Moyle, L.C., Phylogenomics reveals three sources of adaptive variation during a rapid radiation, PLoS Biol., 2016, vol. 14, no. 2. e1002379. doi 10.1371/journal.pbio.1002379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Igic, B., Lande, R., and Kohn, J.R., Loss of selfincompatibility and its evolutionary consequences, Int. J. Plant Sci., 2008, vol. 169, no. 1, pp. 93–104. doi 10.1086/523362

    Article  Google Scholar 

  35. Miller, J.S. and Kostyun, J.L., Functional gametophytic self-incompatibility in a peripheral population of Solanum peruvianum (Solanaceae), Heredity (Edinburgh), 2011, vol. 107, no. 1, pp. 30–39. doi 10.1038/hdy.2010.151

    Article  CAS  Google Scholar 

  36. Han, H.Q., Liu, Y., Jiang, M.M., et al., Identification and expression analysis of YABBY family genes associated with fruit shape in tomato (Solanum lycopersicum L.), Genet. Mol. Res., 2015, vol. 14, no. 2, pp. 7079–7091. doi 10.4238/2015.June.29.1

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Filyushin.

Additional information

Original Russian Text © M.A. Filyushin, M.A. Slugina, A.V. Shchennikova, E.Z. Kochieva, 2018, published in Genetika, 2018, Vol. 54, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filyushin, M.A., Slugina, M.A., Shchennikova, A.V. et al. Identification and Expression Analysis of the YABBY1 Gene in Wild Tomato Species. Russ J Genet 54, 536–547 (2018). https://doi.org/10.1134/S1022795418050022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418050022

Keywords