Skip to main content
Log in

Genetic Control of Meiosis in Plants

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genes controlling meiotic progression in plants and not affecting mitotic progression are most widely studied in maize Zea mays and cruciferous plant Arabidopsis thaliana. These include the genes controlling the differentiation of somatic cells into sporogenous ones and meiosis-initiating genes, genes encoding meiosis-specific proteins of chromosomes and synaptonemal complexes, genes of mediator proteins and enzymes of meiotic DNA recombination and crossover, and genes controlling meiosis-specific behavior of centromeres and the course of two meiotic divisions. A large number of such genes have been cloned and studied at the molecular level. The studies of meiotic genes in rice Oriza sativa are actively developing, while studies of corresponding genes in barley Hordeum vulgare, rye Secale cereale, tomato Solanum lycopersicum, and hexaploid wheat Triticum aestivum are less advanced. To identify meiotic genes, chemical and insertional mutagenesis, genetic and cytological analysis, genomic and proteomic studies, methods of reverse genetics, and bioinformatics are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beadle, G.W., A gene for supernumerary mitosis during spore development in Zea mays, Science, 1929, vol. 50, pp. 406–407.

    Article  Google Scholar 

  2. Beadle, G.W., Genetic and cytological studies of a Mendelian asynaptic in Zea mays, Cornell Agric. Exp. Sta. Mem., 1930, vol. 129, pp. 1–23.

    Google Scholar 

  3. Rhoades, M.M., Genetic control of chromosomal behavior, Maize Genet. Coop. Newslett., 1956, vol. 30, pp. 38–48.

    Google Scholar 

  4. Golubovskaya, I.N., Genetic control of meiosis, Int. Rev. Cytol., 1979, vol. 58, pp. 247–290.

    Article  CAS  PubMed  Google Scholar 

  5. Golubovskaya, I.N., Meiosis in maize: mei-genes and conception of genetic control of meiosis, Adv. Genet., 1989, vol. 26, pp. 149–192.

    CAS  Google Scholar 

  6. Kaul, M.L. and Murthy, T.G., Mutant genes affecting higher plant meiosis, Theor. Appl. Genet., 1985, vol. 70, no. 5, pp. 449–466.

    Article  CAS  PubMed  Google Scholar 

  7. Hamant, O., Ma, H., and Cande, W.Z., Genetics of meiotic prophase I in plants, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 267–302.

    Article  CAS  PubMed  Google Scholar 

  8. Mercier, R. and Grelon, M., Meiosis in plants: ten years of gene discovery, Cytogenet. Genome Res., 2008, vol. 120, no. 34, pp. 281–290.

    Article  CAS  PubMed  Google Scholar 

  9. Cande, W.Z., Golubovskaya, I., Wang, C.J.R., et al., Meiotic genes and meiosis in maize, in Handbook of Maize, New York: Springer-Verlag, 2009, pp. 353–375.

    Google Scholar 

  10. Cande, W.Z., Freeling, M., and Golubovskaya, I., the life of a geneticist studing meiosis, Genetics, 2011, vol. 188, pp. 491–498.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bogdanov, Yu.F., A talented researcher of the genetic control of meiosis: to the 75th anniversary of I.N. Golubovskaya, Vavilov. Zh. Genet. Sel., 2014, vol. 18, no. 2, pp. 228–234.

    Google Scholar 

  12. Golubovskaya, I.N., Avalkina, N.A., and Sheridan, W.F., Effect of several meiotic mutations on female meiosis in maize, Dev. Genet., 1992, vol. 13, pp. 411–424.

    Article  Google Scholar 

  13. Golubovskaya, I.N., Grebennikova, Z.K., Avalkina, N.A., et al., The role of ameiotic 1 gene in the initiation of meiosis and subsequent meiotic events in maize, Genetics, 1993, vol. 135, pp. 1151–1166.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Golubovskaya I.N., Avalkina N.A., Sheridan W.F., New insight into the role of the maize ameiotic I locus, Genetics, 1997, vol. 147, pp. 1339–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheridan, W.F., Avalkina, N.A., Shamrov, I.I., et al., The mac1 gene: controlling the commitment to the meiotic pathway in maize, Genetics, 1996, vol. 142, pp. 1009–1020.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheridan, W.F., Golubeva, E.A., Abrhamova, L.I., et al., The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther, Genetics, 1999, vol. 153, pp. 993–941.

    Google Scholar 

  17. Golubovskaya, I.N., Harper, L.C., Pawlowski, W.P., et al., The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.), Genetics, 2002, vol. 162, pp. 1979–1993.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Golubovskaya, I.N., Hamant, O., Timofejeva, L., et al., Alleles of afd1 dissect REC8 functions during meiotic prophase I, J. Cell Sci., 2006, vol. 119, pp. 3306–3315.

    Article  CAS  PubMed  Google Scholar 

  19. Hamant, O., Golubovskaya, I., Meeley, R., et al., A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions, Curr. Biol., 2005, vol. 15, no. 10, pp. 948–954.

    Article  CAS  PubMed  Google Scholar 

  20. Pawlowski, W.P., Golubovskaya, I.N., and Cande, W.Z., Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition, Plant Cell, 2003, vol. 15, no. 8, pp. 1807–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pawlowski, W.P., Golubovskaya, I.N., Timofejeva, L., et al., Coordination of meiotic recombination, pairing, and synapsis by PHS1, Science, 2004, vol. 303, pp. 89–92.

    Article  CAS  PubMed  Google Scholar 

  22. Pawlowski, W.P., Wang, C.-J.R., Golubovskaya, I.N., et al., Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 9, pp. 3603–3608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, C.-J.R., Nan, G.-L., Kelliher, T., et al., Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development, Development, 2012, vol. 139, no. 14, pp. 2594–2603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glover, J., Grelon, M., Craig, S., et al., Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis, Plant J., 1998, vol. 15, no. 3, pp. 345–356.

    Article  CAS  PubMed  Google Scholar 

  25. Caryl, A.P., Armstrong, S.J., Jones, G.H., et al., A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1, Chromosoma, 2000, vol. 109, nos. 1–2, pp. 62–71.

    Article  CAS  PubMed  Google Scholar 

  26. Motamayor, J.C., Vezon, D., Bajon, C., et al., Switch (swi1), an Arabidopsis thaliana mutant affected in the female meiotic switch, Sex. Plant Reprod., 2000, vol. 12, no. 4, pp. 209–218.

    Article  Google Scholar 

  27. Osakabe, K., Yoshioka, T., Ichikawa, H., et al., Molecular cloning and characterization of RAD51-like genes from Arabidopsis thaliana, Plant Mol. Biol., 2002, vol. 50, pp. 71–81.

    Article  CAS  PubMed  Google Scholar 

  28. Higgins, J.D., Sanchez-Moran, E., Armstrong, S.J., et al., The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over, Genes Dev., 2005, vol. 19, pp. 2488–2500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mercier, R., Vezon, D., Bullier, E., et al., SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis, Genes Dev., 2001, vol. 15, no. 14, pp. 1859–1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mercier, R., Armstrong, S.J., Horlow, C., et al., The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis, Development, 2003, vol. 130, no. 14, pp. 3309–3318.

    Article  CAS  PubMed  Google Scholar 

  31. Zamariola, L., De Storme, N., Vannerum, K., et al., SHUGOSHINs and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana, Plant J., 2014, vol. 77, no. 5, pp. 782–794.

    Article  CAS  PubMed  Google Scholar 

  32. Nonomura, K.-I., Miyoshi, K., Eiguchi, M., et al., The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice, Plant Cell, 2003, vol. 15, no. 8, pp. 1728–1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nonomura, K.I., Nakano, M., Murata, K., et al., An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis, Mol. Genet. Genomics, 2004, vol. 271, no. 2, pp. 121–129.

    Article  CAS  PubMed  Google Scholar 

  34. Nonomura, K., Morohoshi, A., Nakano, M., et al., A germ cell–specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice, Plant Cell, 2007, vol. 19, pp. 2583–2594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, M., Tang, D., Wang, K., et al., OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis, Plant J., 2011, vol. 67, no. 4, pp. 583–594.

    Article  CAS  PubMed  Google Scholar 

  36. Luo Q., Li Y., Shen Y. et al. Ten years of gene discovery for meiotic event control in rice, J. Genet. Genomics, 2014, vol. 41, no. 3, pp. 125–137.

    Article  PubMed  Google Scholar 

  37. Sosnikhina, S.P., Fedotova, Y.S., Smirnov, V.G., et al., Meiotic mutants of rye Secale cereale L.: 1. Synaptic mutant sy1, Theor. Appl. Genet., 1992, vol. 84, nos. 7–8, pp. 979–985.

    CAS  PubMed  Google Scholar 

  38. Sosnikhina, S.P., Fedotova, Y.S., Smirnov, V.G., et al., The study of genetic control of meiosis in rye, Russ. J. Genet., 1994, vol. 30, no. 8, pp. 1043–1056.

    Google Scholar 

  39. Sosnikhina, S.P., Mikhailova, E.I., Tikholiz, O.A., et al., Meiotic mutations in rye Secale cereale L., Cytogenet. Genome Res., 2005, vol. 109, nos. 1–3, pp. 215–220.

    Article  CAS  PubMed  Google Scholar 

  40. Sosnikhina, S.P., Mikhailova, E.I., Tikholiz, O.A., et al., Genetic collection of meiotic mutants of rye Secale cereale L., Russ. J. Genet., 2005, vol. 41, no. 10, pp. 1071–1080. https://doi.org/10.1007/s11177-005-0202-x.

    Article  CAS  Google Scholar 

  41. Sosnikhina, S.P., Mikhailova, E.I., Tikholiz, O.A., et al., Expression and inheritance of a desynaptic phenotype with impaired homologous synapsis in rye, Russ. J. Genet., 2007, vol. 43, no. 10, pp. 1193–1200. https://doi.org/10.1134/S1022795407100146.

    Article  CAS  Google Scholar 

  42. Sosnikhina, S.P., Mikhailova, E.I., Tsvetkova, N.V., et al., Impairment of homologous chromosome synapsis in meiosis in rye Secale cereale L. caused by a recessive mutation of the sy18 gene, Russ. J. Genet., 2009, vol. 45, article 1385.

  43. Lovtsyus, A.V., Dolmatovich, T.V., Mikhailova, E.I., et al., Obtaining double mutants for synaptic genes sy1 and sy9 in rye and their study by means of molecular cytogenetic methods, Vestn. S.-Peterb. Univ., Ser. 3: Biol., 2009, vol. 3, no. 4, pp. 47–56.

    Google Scholar 

  44. Mikhailova, E.I., Lovtsyus, A.V., and Sosnikhina, S.P., Some features of meiosis key events in rye and its synaptic mutants, Russ. J. Genet., 2010, vol. 46, no. 10, pp. 1210–1213. https://doi.org/10.1134/S1022795410100170.

    Article  CAS  Google Scholar 

  45. Bogdanov, Y.F., Fedotova, Y.S., Sosnikhina, S.P., et al., Bar-and thorn-like abnormalities in synaptonemal complex of a mutant rye, Genome, 1998, vol. 41, no. 2, pp. 284–288.

    Article  Google Scholar 

  46. Mikhailova, E.I., Sosnikhina, S.P., Kirillova, G.A., et al., Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.), J. Cell Sci., 2001, vol. 114, no. 10, pp. 1875–1882.

    CAS  PubMed  Google Scholar 

  47. Jenkins, G., Mikhailova, E.I., Langdon, T., et al., Strategies for the study of meiosis in rye, Cytogenet. Genome Res., 2005, vol. 109, pp. 221–227.

    Article  CAS  PubMed  Google Scholar 

  48. Mikhailova, E.I., Phillips, D., Sosnikhina, S.P., et al., Molecular assembly of meiotic proteins Asy1 and Zyp1 and pairing promiscuity in rye (Secale cereale L.) and its synaptic mutant sy10, Genetics, 2006, vol. 174, no. 3, pp. 1247–1258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Phillips, D., Mikhailova, E.I., Timofejeva, L., et al., Dissecting meiosis of rye using translational proteomics, Ann. Bot., 2008, vol. 101, no. 6, pp. 873–880.

    Article  CAS  PubMed  Google Scholar 

  50. Malyshev, S.V., Dolmatovich, T.V., Voilokov, A.V., et al., Molecular genetic mapping of the sy1 and sy9 asynaptic genes in rye (Secale cereale L.) using microsatellite and isozyme markers, Russ. J. Genet., 2009, vol. 45, no. 12, pp. 1444–1449. https://doi.org/10.1134/S1022795409120060.

    Article  CAS  Google Scholar 

  51. Golubtsov, S.V., Sosnikhina, S.P., Iordanskaya, I.V., et al., Semisterile meiotic mutant sy11 with heterologous chromosome synapsis in rye Secale cereale L., Russ. J. Genet., 2010, vol. 46, no. 6, pp. 682–688. https://doi.org/10.1134/S1022795410060086.

    Article  CAS  Google Scholar 

  52. Dolmatovich, T.V., Malyshev, S.V., Sosnikhina, S.P., et al., Mapping of meiotic genes in rye (Secale cereale L.): Localization of sy18 mutation with impaired homologous synapsis using microsatellite markers, Russ. J. Genet., 2013, vol. 49, no. 4, pp. 411–416. https://doi.org/10.1134/S1022795413040030.

    Article  CAS  Google Scholar 

  53. Dolmatovich, T.V., Malyshev, S.V., Sosnikhina, S.P., et al., Mapping of meiotic genes in rye (Secale cereale L.): localization of sy19 mutation, impairing homologous synapsis, by means of isozyme and microsatellite markers, Russ. J. Genet., 2013, vol. 49, no. 5, pp. 511–516. https://doi.org/10.1134/S1022795413030058.

    Article  CAS  Google Scholar 

  54. Simanovsky, S.A., Matveevsky, S.N., Iordanskaya, I.V., et al., Spiral cores of synaptonemal complex lateral elements at the diplotene stage in rye include the ASY1 protein, Russ. J. Genet., 2014, vol. 50, no. 10, pp. 1107–1111. https://doi.org/10.1134/S1022795414100111.

    Article  CAS  Google Scholar 

  55. Havekes, F.W.J., de Jong, J.H., Heyting, C., et al., Synapsis and chiasma formation in four meiotic mutants of tomato (Lycopersicon esculentum), Chromosome Res., 1994, vol. 2, no. 4, pp. 315–325.

    Article  CAS  PubMed  Google Scholar 

  56. Havekes, F.W., de Jong, J.H., and Heyting, C., Comparative analysis of female and male meiosis in three meiotic mutants of tomato, Genome, 1997, vol. 40, no. 6, pp. 879–886.

    Article  CAS  PubMed  Google Scholar 

  57. Qiao, H., Offenberg, H.H., and Anderson, L.K., Altered distribution of MLH1 foci is associated with changes in cohesins and chromosome axis compaction in an asynaptic mutant of tomato, Chromosoma, 2012, vol. 121, no. 3, pp. 291–305.

    Article  CAS  PubMed  Google Scholar 

  58. Lundqvist, U., Franckowiak, J.D., and Konishi, T., New and revised descriptions of barley genes, Barley Genet. Newslett., 1997, vol. 26, pp. 22–516.

    Google Scholar 

  59. Barakate, A., Higgins, J.D., Vivera, S., et al., The synaptonemal complex protein ZYP1 is required for imposition of meiotic crossovers in barley, Plant Cell, 2014, vol. 26, no. 2, pp. 729–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Colas, I., Macaulay, M., Higgins, J.D., et al., A spontaneous mutation in MutL-Homolog 3 (HvMLH3) affects synapsis and crossover resolution in the barley desynaptic mutant des10, New Phytol., 2016, vol. 212, no. 3, pp. 693–707.

    Article  CAS  PubMed  Google Scholar 

  61. Feldman, M., The effect of chromosome 5B, 5D, and 5A on chromosomal pairing in Triticum aestivum, Proc. Natl. Acad. Sci. U.S.A., 1966, vol. 55, pp. 1447–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martinez-Perez, E., Shaw, P., and Moore, G., The Ph1 locus is needed to ensure specific somatic and meiotic centromere association, Nature, 2001, vol. 411, pp. 204–207.

    Article  CAS  PubMed  Google Scholar 

  63. Jenkins, G. and Jimenez, G., Genetic control of synapsis and recombination in Lolium amphidiploids, Chromosoma, 1995, vol. 104, no. 3, pp. 164–168.

    Article  CAS  PubMed  Google Scholar 

  64. Moore, G., Meiosis in allopolyploids–the importance of “Teflon” chromosomes, Trends Genet., 2002, vol. 18, no. 9, pp. 456–463.

    Article  CAS  PubMed  Google Scholar 

  65. Ma, H., Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants, Annu. Rev. Plant Biol., 2005, vol. 56, pp. 393–434.

    Article  CAS  PubMed  Google Scholar 

  66. Feng, X. and Dickinson, H.G., Packaging the male germline in plants, Trends Genet., 2007, vol. 23, no. 10, pp. 503–510.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, X., de Palma, J., and Oane, R., et al., OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers, Plant J., 2008, vol. 54, no. 3, pp. 375–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, S.-L., Jiang, L., Puah, C.S., et al., Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS, Plant Physiol., 2005, vol. 139, no. 1, pp. 186–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Canales, C., Bhatt, A.M., Scott, R., et al., EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis, Curr. Biol., 2002, vol. 12, no. 20, pp. 1718–1727.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao, D.Z., Wang, G.F., Speal, B., et al., The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther, Genes Dev., 2002, vol. 16, no. 15, pp. 2021–2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sorensen, A.-M., Kröber, S., Unte, U.S., et al., The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor, Plant J., 2003, vol. 33, no. 2, pp. 413–423.

    Article  CAS  PubMed  Google Scholar 

  72. Wilson, Z.A., Morroll, S.M., Dawson, J., et al., The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors, Plant J., 2001, vol. 28, no. 1, pp. 27–39.

    Article  CAS  PubMed  Google Scholar 

  73. Higginson, T., Li, S.F., Parish, R.W., AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana, Plant J., 2003, vol. 35, no. 2, pp. 177–192.

    Article  CAS  PubMed  Google Scholar 

  74. Holmes, R.J. and Cohen, P.E., Small RNAs and RNAi pathways in meiotic prophase I, Chromosome Res., 2007, vol. 15, no. 5, pp. 653–665.

    Article  CAS  PubMed  Google Scholar 

  75. Golubovskaya, I.N., Grebennikova, Z.K., and Avalkina, N.A., Novel mei gene allele ameiotic 1 (am1) in maize and the problem of genetic control of meiosis initiation in higher plants, Genetika (Moscow), 1992, vol. 28, no. 3, pp. 137–146.

    Google Scholar 

  76. Siddiqi, I., Ganesh, G., Grossniklaus, U., et al., The dyad gene is required for progression through female meiosis in Arabidopsis, Development, 2000, vol. 127, pp. 197–207.

    CAS  PubMed  Google Scholar 

  77. Azumi, Y., Liu, D., Zhao, D., et al., Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein, EMBO J., 2002, vol. 21, no. 12, pp. 3081–3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stevens, R., Grelon, M., Vezon, D., et al., A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing, Plant Cell, 2004, vol. 16, no. 1, pp. 99–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y., Magnard, J.-L., McCormick, S., et al., Progression through meiosis I and meiosis II in Arabidopsis anthers is regulated by an A-type cyclin predominately expressed in prophase I, Plant Physiol., 2004, vol. 136, no. 4, pp. 4127–4135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaur, J., Sebastian, J., and Siddiqi, I., The Arabidopsis-mei2-like genes play a role in meiosis and vegetative growth in Arabidopsis, Plant Cell, 2006, vol. 18, no. 3, pp. 545–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Strich, R., Meiotic DNA replication, Curr. Top. Dev. Biol., 2004, vol. 61, pp. 29–60.

    Article  CAS  PubMed  Google Scholar 

  82. Haering, C.H., Löwe, J., Hochwagen, A., et al., Molecular architecture of SMC proteins and the yeast cohesin complex, Mol. Cell, 2002, vol. 9, no. 4, pp. 773–788.

    Article  CAS  PubMed  Google Scholar 

  83. Ishiguro, K. and Watanabe, Y., Chromosome cohesion in mitosis and meiosis, J. Cell Sci., 2007, vol. 120, no. 3, pp. 367–369.

    Article  CAS  PubMed  Google Scholar 

  84. Bai, X., Peirson, B.N., Dong, F., et al., Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis, Plant Cell, 1999, vol. 11, no. 3, pp. 417–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cai, X., Dong, F., Edelmann, R.E., et al., The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing, J. Cell Sci., 2003, vol. 116, pp. 2999–3007.

    Article  CAS  PubMed  Google Scholar 

  86. Chelysheva, L., Diallo, S., Vezon, D., et al., AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis, J. Cell Sci., 2005, vol. 118, no. 20, pp. 4621–4632.

    Article  CAS  PubMed  Google Scholar 

  87. Hirano, T., Condensins: universal organizers of chromosomes with diverse functions, Genes Dev., 2012, vol. 26, no. 15, pp. 1659–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mainiero, S. and Pawlowski, W.P., Meiotic chromosome structure and function in plants, Cytogenet. Genome Res., 2014, vol. 143, nos. 1–3, pp. 6–17.

    Article  PubMed  Google Scholar 

  89. Fedotova, Yu.S., Gadzhieva, S.A., and Bogdanov, Yu.F., Expression at the ultrastructural level of the meiotic mutation mei10 compact chromosomes in rye plants, Dokl. Akad. Nauk., 1995, vol. 243, no. 4, pp. 570–572.

    Google Scholar 

  90. Mikhailova, E.I., Tolkacheva, A.V., Mal’tseva, A.L., et al., A search for meiosis-specific proteins in rye Secale cereale L. and mutants of the Peterhof genetic collection, Khromosoma 2015 (Chromosome 2015) (Proc. Int. Conf.), Novosibirsk, 2015.

    Google Scholar 

  91. Bhatt, A.M., Canales, C., and Dickinson, H.G., Plant meiosis: the means to in, Trends Plant Sci., 2001, vol. 6, no. 3, pp. 114–121.

    Article  CAS  PubMed  Google Scholar 

  92. Anderson, L.K. and Stack, S.M., Recombination nodules in plants, Cytogenet. Genome Res., 2005, vol. 109. nos. 1–3, pp. 198–204.

    Article  CAS  PubMed  Google Scholar 

  93. Grelon, M., Vezon, D., Gendrot, G., et al., AtSPO11-1 is necessary for efficient meiotic recombination in plants, EMBO J., 2001, vol. 20, no. 3, pp. 589–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hartung, F. and Puchta, H., Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants, Gene, 2001, vol. 271, no. 1, pp. 81–86.

    Article  CAS  PubMed  Google Scholar 

  95. Stacey, N.J., Kuromori, T., Azumi, Y., et al., Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination, Plant J., 2006, vol. 48, no. 2, pp. 206–216.

    Article  CAS  PubMed  Google Scholar 

  96. Keeney, S., Mechanism and control of meiotic recombination initiation, Curr. Top. Dev. Biol., 2001, vol. 52, pp. 1–53.

    Article  CAS  PubMed  Google Scholar 

  97. Jolivet, S., Vezon, D., Froger, N., et al., Non conservation of the meiotic function of the Ski8/Rec103 homolog in Arabidopsis, Genes Cells, 2006, vol. 11, no. 6, pp. 615–622.

    Article  CAS  PubMed  Google Scholar 

  98. De Muyt, A., Vezon, D., Gendrot, G., et al., AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana, EMBO J., 2007, vol. 26, no. 18, pp. 4126–4137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Borde, V., The multiple roles of the Mre11 complex for meiotic recombination, Chromosome Res., 2007, vol. 15, no. 5, pp. 551–563.

    Article  CAS  PubMed  Google Scholar 

  100. Puizina, J., Siroky, J., Mokros, P., et al., Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis, Plant Cell, 2004, vol. 16, no. 8, pp. 1968–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bleuyard, J.-Y., Gallego, M.E., and White, C.I., Meiotic defects in the Arabidopsis rad50 mutant point to conservation of the MRX complex function in early stages of meiotic recombination, Chromosoma, 2004, vol. 113, no. 4, pp. 197–203.

    Article  CAS  PubMed  Google Scholar 

  102. Shinohara, A. and Shinohara, M., Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination, Cytogenet. Genome Res., 2004, vol. 107, nos. 3–4, pp. 201–207.

    Article  CAS  PubMed  Google Scholar 

  103. Rey, M.-D., Calderón, M.C., and Prieto, P., The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley, Front. Plant Sci., 2015, vol. 6:160. doi 10.3389/fpls.2015.00160

  104. Li, J., Harper, L.C., Golubovskaya, I., et al., Functional analysis of maize RAD51 in meiosis and doublestrand break repair, Genetics, 2007, vol. 176, no. 3, pp. 1469–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, W., Chen, C., Markmann-Mulisch, U., et al., The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 29, pp. 10596–10601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Couteau, F., Belzile, F., Horlow, C., et al., Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis, Plant Cell, 1999, vol. 11, no. 9, pp. 1623–1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Siaud, N., Dray, E., Gy, I., et al., Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1, EMBO J., 2004, vol. 23, no. 6, pp. 1392–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kerzendorfer, C., Vignard, J., Pedrosa-Harand, A., et al., The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination, J. Cell Sci., 2006, vol. 119, pp. 2486–2496.

    Article  CAS  PubMed  Google Scholar 

  109. Mezard, C., Vignard, J., Drouaud, J., et al., The road to crossovers: plants have their say, Trends Genet., 2007, vol. 23, no. 2, pp. 91–99.

    Article  CAS  PubMed  Google Scholar 

  110. Lynn, A., Soucek, R., and Börner, G.V., ZMM proteins during meiosis: crossover artists at work, Chromosome Res., 2007, vol. 15, no. 5, pp. 591–605.

    Article  CAS  PubMed  Google Scholar 

  111. Copenhaver, G.P., Housworth, E.A., and Stahl, F.W., Crossover interference in Arabidopsis, Genetics, 2002, vol. 160, no. 4, pp. 1631–1639.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hartung, F., Suer, S., Bergmann, T., et al., The role of AtMUS81 in DNA repair and its genetic interaction with the helicase AtRecQ4A, Nucleic Acids Res., 2006, vol. 34, no. 16, pp. 4438–4448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Berchowitz, L.E., Francis, K.E., Bey, A.L., et al., The role of AtMUS81 in interference-insensitive crossovers in A. thaliana, PLoS Genet., 2007, vol. 3, no. 8.

    Google Scholar 

  114. Anderson, L.K., Lohmiller, L.D., Tang, X., et al., Combined fluorescent and electron microscopic imaging unveils the specific properties of two classes of meiotic crossovers, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 37, pp. 13415–13420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Franklin, A.E., McElver, J., Sunjevaric, I., et al., Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase, Plant Cell, 1999, vol. 11, no. 5, pp. 809–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bass, H.W., Bordoli, S.J., and Foss, E.M., The desynaptic (dy) and desynaptic1 (dsy1) mutations in maize (Zea mays L.) cause distinct telomere-misplacement phenotypes during meiotic prophase, J. Exp. Bot., 2003, vol. 54, no. 380, pp. 39–46.

    Article  CAS  PubMed  Google Scholar 

  117. Loidl, J., The initiation of meiotic chromosome pairing: the cytological view, Genome, 1990, vol. 33, no. 6, pp. 759–778.

    Article  CAS  PubMed  Google Scholar 

  118. Caryl, A.P., Armstrong, S.J., Jones, G.H., et al., A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1, Chromosoma, 2000, vol. 109, nos. 1–2, pp. 62–71.

    Article  CAS  PubMed  Google Scholar 

  119. Hollingsworth, N.M., Goetsch, L., and Byers, B., The HOP1 gene encodes a meiosis-specific component of yeast chromosomes, Cell, 1990, vol. 61, no. 1, pp. 73–84.

    Article  CAS  PubMed  Google Scholar 

  120. Zetka, M.C., Kawasaki, I., Strome, S., et al., Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation, Genes Dev., 1999, vol. 13, no. 17, pp. 2258–2270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Grishaeva, T.M. and Bogdanov, Yu.F., Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes, Int. J. Evol. Biol., 2014:856230.

    Google Scholar 

  122. Lee, D.V., Kao, Y., Ku, J., et al., The axial element protein DESYNAPTIC2 mediates meiotic doublestrand break formation and synaptonemal complex assembly in maize, Plant Cell, 2015, vol. 27, pp. 2516–2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Börner, G.V., Kleckner, N., and Hunter, N., Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis, Cell, 2004, vol. 117, no. 1, pp. 29–45.

    Article  PubMed  Google Scholar 

  124. Yang, M., Hu, Y., Lodhi, M., et al., The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 20, pp. 11416–11421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cromer, L., Jolivet, S., Horlow, C., et al., Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase I and by PATRONUS at interkinesis, Curr. Biol., 2013, vol. 23, no. 21, pp. 2090–2099.

    Article  CAS  PubMed  Google Scholar 

  126. D’Erfurth, I., Jolivet, S., Froger, N., et al., Turning meiosis into mitosis, PLoS Biol., 2009, vol. 7, no. 6. e1000124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Mieulet, D., Jolivet, S., Rivard, M., et al., Turning rice meiosis into mitosis, Cell Res., 2016, vol. 26, no. 11, pp. 1242–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lambing, C., Franklin, F.C.H., and Wang, C.-J.R., Understanding and manipulating meiotic recombination in plants, Plant Physiol., 2017, vol. 173, no. 3, pp. 1530–1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bogdanov, Yu.F., Variation and evolution of meiosis, Russ. J. Genet., 2003, vol. 39, no. 4, pp. 363–381. https://doi.org/10.1023/A:1023345311889.

    Article  CAS  Google Scholar 

  130. Zhou, A. and Pawlowski, W.P., Regulation of meiotic gene expression in plants, Front. Plant Sci., 2014, vol. 5.

  131. Stassen, N.Y., Logsdon, J.M., Vora, G.J., et al., Isolation and characterization of rad51 orthologs from Coprinus cinereus and Lycopersicon esculentum, and phylogenetic analysis of eukaryotic recA homologs, Curr. Genet., 1997, vol. 31, pp. 144–157.

    Article  CAS  PubMed  Google Scholar 

  132. Grishaeva, T.M. and Bogdanov, Yu.F., Evolutionary conservation of recombination proteins and variability of meiosis-specific proteins of chromosomes, Russ. J. Genet., 2017, vol. 53, no. 5, pp. 542–550. https://doi.org/10.1134/S1022795417040081.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Simanovsky.

Additional information

Original Russian Text © S.A. Simanovsky, Yu.F. Bogdanov, 2018, published in Genetika, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simanovsky, S.A., Bogdanov, Y.F. Genetic Control of Meiosis in Plants. Russ J Genet 54, 389–402 (2018). https://doi.org/10.1134/S1022795418030122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418030122

Keywords

Navigation