Skip to main content
Log in

Genetic Regulation of Common Wheat Heading Time

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The success of plant adaptation in different agroecological conditions is largely determined by the heading time. In grain crops, this is one of the basic traits in description of the variety, since the selection of varieties by the appropriate heading time for the region of their cultivation provides maximal realization of the potential of the variety by the productivity. To develop wheat varieties adapted to certain conditions, it is important to understand the mechanisms of formation of this trait at a diploid and polyploid level of genome organization. This review summarizes the main mechanisms underlying the formation of the heading time of diploid and polyploid wheat forms; the genes whose change in the expression is associated with variation in the common wheat heading time are described. Besides the main mechanisms such as photoperiod sensitivity and vernalization requirement, the effects of the circadian rhythms genes, phytohormones, light receptors, microRNA, and some other factors that significantly contribute to the heading time formation are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Putterill, J., Laurie, R., and Macknight, R., It’s time to flower: the genetic control of flowering time, Bioessays, 2004, vol. 26, pp. 363–373. doi 10.1002/bies.20021

    Article  CAS  PubMed  Google Scholar 

  2. Cockram, J., Jones, H., Leigh, F.J., et al., Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity, J. Exp. Bot., 2007, vol. 58, pp. 1231–1244. doi 10.1093/jxb/erm042

    Article  CAS  PubMed  Google Scholar 

  3. Blümel, M., Dally, N., and Jung, C., Flowering time regulation in crops–what did we learn from Arabidopsis?, Curr. Opin. Biotechnol., 2015, vol. 32, pp. 121–129. doi 10.1016/j.copbio.2014.11.023

    Article  PubMed  CAS  Google Scholar 

  4. Fowler, S., Lee, K., Onouchi, H., et al., GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains, EMBO J., 1999, vol. 18, pp. 4679–4688. doi 10.1093/emboj/18.17.4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mizoguchi, T., Wright, L., Fujiwara, S., et al., Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis, Plant Cell, 2005, vol. 17, pp. 2255–2270. doi 10.1105/tpc.105.033464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simpson, G.G., The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 570–574. doi 10.1016/j.pbi.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  7. He, Y., Chromatin regulation of flowering, Trends Plant Sci., 2012, vol. 17, pp. 556–562. doi 10.1016/j.tplants.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  8. Kim, D.-H. and Sung, S., Genetic and epigenetic mechanisms underlying vernalization, Arabidopsis Book, 2014, vol. 12. e0171. doi 10.1199/tab.0171

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wahl, V., Ponnu, J., Schlereth, A., et al., Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana, Science, 2013, vol. 339, pp. 704–707. doi 10.1126/science.1230406

    Article  CAS  PubMed  Google Scholar 

  10. Aukerman, M.J. and Sakai, H., Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-Like target genes, Plant Cell, 2003, vol. 15, pp. 2730–2741. doi 10.1105/tpc.016238.pression

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, X., A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development, Science, 2004, vol. 303, pp. 2022–2025. doi 10.1126/science. 1088060

    Article  CAS  PubMed  Google Scholar 

  12. Jung, J.H., Seo, P.J., Ahn, J.H., et al., Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering, J. Biol. Chem., 2012, vol. 287, pp. 16007–16016. doi 10.1074/jbc.M111.337485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D’Aloia, M., Bonhomme, D., Bouché, F., et al., Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF, Plant J., 2011, vol. 65, pp. 972–979. doi 10.1111/j.1365-313X.2011.04482.x

    Article  PubMed  CAS  Google Scholar 

  14. Porri, A., Torti, S., Romera-Branchat, M., et al., Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods, Development, 2012, vol. 139, pp. 2198–2209. doi 10.1242/dev.077164

    Article  CAS  PubMed  Google Scholar 

  15. Johansson, M. and Staiger, D., Time to flower: interplay between photoperiod and the circadian clock, J. Exp. Bot., 2015, vol. 66, pp. 719–730. doi 10.1093/jxb/eru441

    Article  CAS  PubMed  Google Scholar 

  16. Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., et al., Photoperiodic flowering: time measurement mechanisms in leaves, Annu. Rev. Plant Biol., 2015, vol. 66, pp. 441–464. doi 10.1146/annurev-arplant-043014-115555

    Article  CAS  PubMed  Google Scholar 

  17. Michaels, S.D. and Amasino, R.M., FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering, Plant Cell, 1999, vol. 11, pp. 949–956. doi 10.1105/tpc.11.5.949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheldon, C.C., Burn, J.E., Perez, P.P., et al., The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation, Plant Cell, 1999, vol. 11, pp. 445–458. doi 10.1105/tpc.11.3.445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheldon, C.C., Rouse, D.T., Finnegan, E.J., et al., The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC), Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 3753–3758. doi 10.1073/pnas.060023597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, J.H., Yoo, S.J., Park, S.H., et al., Role of SVP in the control of flowering time by ambient temperature in Arabidopsis, Genes Dev., 2007, vol. 21, pp. 397–402. doi 10.1101/gad.1518407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Posé, D., Verhage, L., Ott, F., et al., Temperaturedependent regulation of flowering by antagonistic FLM variant, Nature, 2013, vol. 503, pp. 414–417. doi 10.1038/nature12633

    Article  PubMed  CAS  Google Scholar 

  22. Thines, B.C., Youn, Y., Duarte, M.I., et al., The time of day effects of warm temperature on flowering time involve PIF4 and PIF5, J. Exp. Bot., 2014, vol. 65, pp. 1141–1151. doi 10.1093/jxb/ert487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corbesier, L., Vincent, C., Jang, S., et al., FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis, Science, 2007, vol. 316, pp. 1030–1033. doi 10.1126/science.1141752

    Article  CAS  PubMed  Google Scholar 

  24. Yoo, S.K., Chung, K.S., Kim, J., et al., CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis, Plant Physiol., 2005, vol. 139, pp. 770–778. doi 10.1104/pp.105. 066928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jaeger, K.E. and Wigge, P.A., FT protein acts as a long-range signal in Arabidopsis, Curr. Biol., 2007, vol. 17, pp. 1050–1054. doi 10.1016/j.cub.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  26. Moon, J., Suh, S.S., Lee, H., et al., The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis, Plant J., 2003, vol. 35, pp. 613–623. doi 10.1046/j.1365-313X.2003.01833.x

    Article  CAS  PubMed  Google Scholar 

  27. Blázquez, M.A., Soowal, L.N., Lee, I., et al., LEAFY expression and flower initiation in Arabidopsis, Development, 1997, vol. 124, pp. 3835–3844.

    PubMed  Google Scholar 

  28. Simon, R., Igeno, M.I., and Coupland, G., Activation of floral meristem identity genes in Arabidopsis, Nature, 1996, vol. 384, pp. 59–62. doi 10.1038/384059a0

    Article  CAS  PubMed  Google Scholar 

  29. Mandel, M.A. and Yanofsky, M.F., A gene triggering flower formation in Arabidopsis, Nature, 1995, vol. 377, pp. 522–524. doi 10.1038/377522a0

    Article  CAS  PubMed  Google Scholar 

  30. Ferrándiz, C., Gu, Q., Martienssen, R., et al., Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER, Development, 2000, vol. 127, pp. 725–734. doi 10.1046/j.1365-313x.1999.00442.x

    PubMed  Google Scholar 

  31. Gu, Q., Ferrándiz, C., Yanofsky, M.F., et al., The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development, Development, 1998, vol. 125, pp. 1509–1517. doi 10.1105/tpc.1.1.37

    CAS  PubMed  Google Scholar 

  32. Nitcher, R., Pearce, S., Tranquilli, G., et al., Effect of the Hope FT-B1 allele on wheat heading time and yield components, J. Hered., 2014, vol. 105, pp. 666–675. doi 10.1093/jhered/esu042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Würschum, T., Langer, S.M., and Longin, C.F.H., Genetic control of plant height in European winter wheat cultivars, Theor. Appl. Genet., 2015. doi 10.1007/s00122-015-2476-2

    Google Scholar 

  34. Worland, A.J., The influence of flowering time genes on environmental adaptability in European wheats vernalization sensitivity, Euphytica, 1996, vol. 89, pp. 49–57.

    Article  Google Scholar 

  35. Pearce, S., Vanzetti, L.S., and Dubcovsky, J., Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1, Plant Physiol., 2013, vol. 163, pp. 1433–1445. doi 10.1104/pp.113.225854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pearce, S., Kippes, N., Chen, A., et al., RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways, BMC Plant Biol., 2016, vol. 16, p. 141. doi 10.1186/s12870-016-0831-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen, A., Li, C., Hu, W., et al., Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 10037–10044. doi 10.1073/pnas.1409795111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan, L., Fu, D., Li, C., et al., The wheat and barley vernalization gene VRN3 is an orthologue of FT, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 19581–19586. doi 10.1073/pnas.0607142103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, A. and Dubcovsky, J., Wheat TILLING mutants show that the vernalization gene VRN1 downregulates the flowering repressor VRN2 in leaves but is not essential for flowering, PLoS Genet., 2012, vol. 8. e1003134. doi 10.1371/journal.pgen.1003134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galiba, G., Quarrie, S.A., Sutka, J., et al., RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat, Theor. Appl. Genet., 1995, vol. 90, pp. 1174–1179. doi 10.1007/BF00222940

    Article  CAS  PubMed  Google Scholar 

  41. Law, C.N., Worland, A.J., and Giorgi, B., The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat, Heredity (Edinbourg), 1976, vol. 36, pp. 49–58. doi 10.1038/hdy.1976.5

    Article  Google Scholar 

  42. Trevaskis, B., Bagnall, D.J., Ellis, M.H., et al., MADS box genes control vernalization-induced flowering in cereals, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 13099–13104. doi 10.1073/pnas.1635053100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trevaskis, B., Hemming, M.N., Dennis, E.S., et al., The molecular basis of vernalization-induced flowering in cereals, Trends Plant Sci., 2007, vol. 12, pp. 352–357. doi 10.1016/j.tplants.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  44. Kumar, S., Sharma, V., Chaudhary, S., et al., Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalizationinsensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat, J. Genet., 2012, vol. 91, pp. 33–47.

    Article  PubMed  Google Scholar 

  45. Yan, L., Loukoianov, A., Tranquilli, G., et al., Positional cloning of the wheat vernalization gene VRN1, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 6263–6268. doi 10.1073/pnas.0937399100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Loukoianov, A., Yan, L., Blechl, A., et al., Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat, Plant Physiol., 2005, vol. 138, pp. 2364–2373. doi 10.1104/pp.105.064287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Greenup, A., Peacock, W.J., Dennis, E.S., et al., The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals, Ann. Bot., 2009, vol. 103, pp. 1165–1172. doi 10.1093/aob/mcp063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan, L., Helguera, M., Kato, K., et al., Allelic variation at the VRN-1 promoter region in polyploid wheat, Theor. Appl. Genet., 2004, vol. 109, pp. 1677–1186. doi 10.1007/s00122-004-1796-4

    Article  CAS  PubMed  Google Scholar 

  49. Fu, D., Szucs, P., Yan, L., et al., Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat, Mol. Genet. Genomics, 2005, vol. 273, pp. 54–65. doi 10.1007/s00438-004-1095-4

    Article  CAS  PubMed  Google Scholar 

  50. Shcherban, A.B., Efremova, T.T., and Salina, E.A., Identification of a new Vrn-B1 allele using two nearisogenic wheat lines with difference in heading time, Mol. Breed., 2012, vol. 29, pp. 675–685. doi 10.1007/s11032-011-9581-y

    Article  CAS  Google Scholar 

  51. Potokina, E.K., Koshkin, V.A., Alekseeva, E.A., et al., The combination of the Ppd and Vrn gene alleles determines the heading date in common wheat varieties, Russ. J. Genet.: Appl. Res., 2012, vol. 2., no. 4, pp. 311–318.

    Article  Google Scholar 

  52. Dubcovsky, J., Lijavetzky, D., Appendino, L., et al., Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement, Theor. Appl. Genet., 1998, vol. 97, pp. 968–975. doi 10.1007/s001220050978

    Article  CAS  Google Scholar 

  53. Kippes, N., Chen, A., Zhang, X., et al., Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes, Theor. Appl. Genet., 2016, vol. 129, pp. 1417–1428. doi 10.1007/s00122-016-2713-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hemming, M.N., Peacock, W.J., Dennis, E.S., et al., Integration of seasonal flowering time responses in temperate cereals, Plant Signal. Behav., 2008, vol. 3, pp. 601–602. doi 10.4161/psb.3.8.6352

    Article  PubMed  PubMed Central  Google Scholar 

  55. Distelfeld, A., Li, C., and Dubcovsky, J., Regulation of flowering in temperate cereals, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 178–184. doi 10.1016/j.pbi.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  56. Li, C., Distelfeld, A., Comis, A., et al., Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes, Plant J., 2011, vol. 67, pp. 763–773. doi 10.1111/j.1365-313X.2011.04630.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Evans, L.T., Short day induction of inflorescence initiation in some winter wheat varieties, Funct. Plant Biol., 1987, vol. 14, pp. 277–286.

    Google Scholar 

  58. Allard, V., Veisz, O., Kõszegi, B., et al., The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature, J. Exp. Bot., 2012, vol. 63, pp. 847–857. doi 10.1093/jxb/err316

    Article  CAS  PubMed  Google Scholar 

  59. Dubcovsky, J., Loukoianov, A., Fu, D., et al., Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2, Plant Mol. Biol., 2006, vol. 60, pp. 469–480. doi 10.1007/s11103-005-4814-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pidal, B., Yan, L., Fu, D., et al., The CArG-box located upstream from the transcriptional start of wheat vernalization gene VRN1 is not necessary for the vernalization response, J. Hered., 2009, vol. 100, pp. 355–364. doi 10.1093/jhered/esp002

    Article  CAS  PubMed  Google Scholar 

  61. Muterko, A., Kalendar, R., and Salina, E., Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region, BMC Plant Biol., 2016, vol. 16, p. 9. doi 10.1186/s12870-015-0691-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li, C. and Dubcovsky, J., Wheat FT protein regulates VRN1 transcription through interactions with FDL2, Plant J., 2008, vol. 55, pp. 543–554. doi 10.1111/j.1365-313X.2008.03526.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Diallo, A.O., Ali-Benali, M.A., Badawi, M., et al., Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation, Mol. Genet. Genomics, 2012, vol. 287, pp. 575–590. doi 10.1007/s00438-012-0701-0

    Article  CAS  PubMed  Google Scholar 

  64. Golovnina, K.A., Kondratenko, E.Y., Blinov, A.G., et al., Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats, BMC Plant Biol., 2010, vol. 10, p. 168. doi 10.1186/1471-2229-10-168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Xiao, J., Xu, S., Li, C., et al., O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat, Nat. Commun., 2014, vol. 5, p. 4572. doi 10.1038/ncomms5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kippes, N., Debernardi, J.M., Vasquez-Gross, H.A., et al., Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, pp. E5401–E5410. doi 10.1073/pnas.1514883112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sung, S. and Amasino, R.M., Molecular genetic studies of the memory of winter, J. Exp. Bot., 2006, vol. 57, pp. 3369–3377. doi 10.1093/jxb/erl105

    Article  CAS  PubMed  Google Scholar 

  68. Pien, S. and Grossniklaus, U., Polycomb group and trithorax group proteins in Arabidopsis, Biochim. Biophys. Acta, 2007, vol. 1769, pp. 375–382. doi 10.1016/j.bbaexp.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  69. Oliver, S.N., Finnegan, E.J., Dennis, E.S., et al., Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 8386–8391. doi 10.1073/pnas. 0903566106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yoshida, T., Nishida, H., Zhu, J., et al., Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat, Theor. Appl. Genet., 2010, vol. 120, pp. 543–552. doi 10.1007/s00122-009-1174-3

    Article  CAS  PubMed  Google Scholar 

  71. Thomas, B. and Vince-Prue, D., Photoperiodism in Plants, N.Y.: Acad. Press, 1996, 2nd ed.

    Google Scholar 

  72. Slafer, G.A. and Rawson, H.M., Sensitivity of wheat phasic development to major environmental factors: a reexamination of some assumptions made by physiologists and modellers, Aust. J. Plant Physiol., 1994, vol. 21, pp. 393–426. http://dx.doi.org/. doi 10.1071/PP9940393

    Article  Google Scholar 

  73. Koshkin, V.A., Matvienko, I.I., Egorova, E.M., et al., The use of allele-specific markers of the Ppd-D1 gene for analysis of isogenic lines of spring common wheat, Tr. Prikl. Bot., Genet. Sel., 2009, vol. 166, pp. 151–156.

    Google Scholar 

  74. Beales, J., Turner, A., Griffiths, S., et al., A pseudoresponse regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.), Theor. Appl. Genet., 2007, vol. 115, pp. 721–733. doi 10.1007/s00122-007-0603-4

    Article  CAS  PubMed  Google Scholar 

  75. Borlaug, N.E., Contributions of conventional plant breeding to food production, Science, 1983, vol. 219, pp. 689–693. doi 10.1126/science.219.4585.689

    Article  CAS  PubMed  Google Scholar 

  76. Scarth, R. and Law, C.N., The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear-emergence time on chromosome 2B of wheat, Heredity (Edinbourg), 1983, vol. 51, pp. 607–619. doi 10.1038/hdy.1983.73

    Google Scholar 

  77. Law, C.N., Sutka, J., and Worland, A.J., A genetic study of day-length response in wheat, Heredity (Edinbourg), 1978, vol. 41, pp. 185–191. doi 10.1038/hdy.1978.87

    Article  Google Scholar 

  78. Wilhelm, E.P., Turner, A.S., and Laurie, D.A., Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.), Theor. Appl. Genet., 2009, vol. 118, pp. 285–294. doi 10.1007/s00122-008-0898-9

    Article  CAS  PubMed  Google Scholar 

  79. Worland, A.J., Börner, A., Korzun, V., et al., The influence of photoperiod genes on the adaptability of European winter wheats, Euphytica, 1998, vol. 100, pp. 385–394. doi 10.1023/A:1018327700985

    Article  CAS  Google Scholar 

  80. Shaw, L.M., Turner, A.S., Herry, L., et al., Mutant alleles of Photoperiod-1 in wheat (Triticum aestivum L.) that confer a late flowering phenotype in long days, PLoS One, 2013, vol. 8. e79459. doi 10.1371/journal. pone.0079459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Worland, A.J., Borner, A., Korzun, V., et al., The influence of photoperiod genes on the adaptability of European winter wheats, Euphytica, 1998, vol. 100, pp. 385–394. doi 10.1023/a:1018327700985

    Article  CAS  Google Scholar 

  82. Nishida, H., Yoshida, T., Kawakami, K., et al., Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time, Mol. Breed., 2013, vol. 31, pp. 27–37. doi 10.1007/s11032-012-9765-0

    Article  CAS  Google Scholar 

  83. Díaz, A., Zikhali, M., Turner, A., et al., Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum), PLoS One, 2012, vol. 7. e33234. doi 10.1371/journal.pone.0033234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kiss, T., Balla, K., Veisz, O., et al., Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.), Mol. Breed., 2014, vol. 34, pp. 297–310. doi 10.1007/s11032-014-0034-2

    CAS  PubMed Central  Google Scholar 

  85. Shaw, L.M., Turner, A.S., and Laurie, D.A., The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum), Plant J., 2012, vol. 71, pp. 71–84. doi 10.1111/j.1365-313X.2012.04971.x

    Article  CAS  PubMed  Google Scholar 

  86. Suárez-López, P., Wheatley, K., Robson, F., et al., CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis, Nature, 2001, vol. 410, pp. 1116–1120.

    Article  PubMed  Google Scholar 

  87. Wu, L., Liu, D., Wu, J., et al., Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon, Plant Cell, 2013, vol. 25, pp. 4363–4377. doi 10.1105/tpc.113.118620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Peng, F.Y., Hu, Z., and Yang, R., Genome-wide comparative analysis of flowering-related genes in Arabidopsis, Wheat, and Barley, Int. J. Plant Genomics, 2015, vol. 2015, pp. 1–17. doi 10.1155/2015/874361

    Article  CAS  Google Scholar 

  89. Takahashi, Y., Teshima, K.M., Yokoi, S., et al., Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 4555–4560. doi 10.1073/pnas. 0812092106

    CAS  PubMed  Google Scholar 

  90. Campoli, C., Drosse, B., Searle, I., et al., Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS, Plant J., 2012, vol. 69, pp. 868–880. doi 10.1111/j.1365-313X.2011.04839.x

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, Z., Chen, J., Su, Y., et al., TaLHY, a 1R-MYB transcription factor, plays an important role in disease resistance against stripe rust fungus and ear heading in wheat, PLoS One, 2015, vol. 10, pp. 1–13. doi 10.1371/journal.pone.0127723

    Google Scholar 

  92. Strayer, C., Oyama, T., Schultz, T.F., et al., Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog, Science, 2000, vol. 289, pp. 768–771. doi 10.1126/science.289.5480.768

    Article  CAS  PubMed  Google Scholar 

  93. Alabadí, D., Oyama, T., Yanovsky, M.J., et al., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock, Science, 2001, vol. 293, pp. 880–883. doi 10.1126/science.1061320

    Article  PubMed  Google Scholar 

  94. Zhao, X.Y., Hong, P., Wu, J.Y., et al., The taemiR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat, Plant Physiol., 2016, vol. 170, pp. 1578–1594. doi 10.1104/pp.15.01216

    CAS  PubMed  PubMed Central  Google Scholar 

  95. James, A.B., Monreal, J.A., Nimmo, G.A., et al., The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots, Science, 2008, vol. 322, pp. 1832–1835. doi 10.1126/science.1161403

    Article  CAS  PubMed  Google Scholar 

  96. Higgins, J.A., Bailey, P.C., and Laurie, D.A., Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses, PLoS One, 2010, vol. 5, p. 1. doi 10.1371/journal. pone.0010065

    Article  CAS  Google Scholar 

  97. Zhang, W., Zhao, G., Gao, L., et al., Functional studies of heading date-related gene TaPRR73, a paralog of Ppd1 in common wheat, Front. Plant Sci., 2016, vol. 7, pp. 1–11. doi 10.3389/fpls.2016.00772

    Google Scholar 

  98. Calixto, C.P.G., Alternative splicing in the regulation of the barley circadian clock, Thesis PhD, Dundee: University of Dundee, 2013.

    Google Scholar 

  99. Campoli, C., Shtaya, M., Davis, S.J., et al., Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs, BMC Plant Biol., 2012, vol. 12, p. 97. doi 10.1186/1471-2229-12-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nusinow, D.A., Helfer, A., Hamilton, E.E., et al., The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth, Nature, 2011, vol. 475, pp. 398–402. doi 10.1038/nature10182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gawronski, P., Ariyadasa, R., Himmelbach, A., et al., A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the Eps-3Am mutant of einkorn wheat, Genetics, 2014, vol. 196, pp. 1253–1261. doi 10.1534/genetics. 113.158444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mizuno, N., Kinoshita, M., Kinoshita, S., et al., Loss-of-function mutations in three homoeologous PHYTOCLOCK 1 genes in common wheat are associated with the extra-early flowering phenotype, PLoS One, 2016, vol. 11. e0165618. doi 10.1371/journal. pone.0165618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Turner, A.S., Faure, S., Zhang, Y., et al., The effect of day-neutral mutations in barley and wheat on the interaction between photoperiod and vernalization, Theor. Appl. Genet., 2013, vol. 126, pp. 2267–2277. doi 10.1007/s00122-013-2133-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alvarez, M.A., Tranquilli, G., Lewis, S., et al., Genetic and physical mapping of the earliness per se locus Eps-Am1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene, Funct. Integr. Genomics, 2016, vol. 16, pp. 365–382. doi 10.1007/s10142-016-0490-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zikhali, M., Leverington-Waite, M., Fish, L., et al., Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum), Mol. Breed., 2014, vol. 34, pp. 1023–1033. doi 10.1007/s11032-014-0094-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, J., Wen, W., Hanif, M., et al., TaELF3-1DL, a homolog of ELF3, is associated with heading date in bread wheat, Mol. Breed., 2016, vol. 36, p. 161. doi 10.1007/s11032-016-0585-5

    Article  CAS  Google Scholar 

  107. Zikhali, M., Wingen, L.U., and Griffiths, S., Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum), J. Exp. Bot., 2016, vol. 67, pp. 287–299. doi doi 10.1093/jxb/erv458

    Article  CAS  PubMed  Google Scholar 

  108. Yu, J.W., Rubio, V., Lee, N.Y., et al., COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability, Mol. Cell, 2008, vol. 32, pp. 617–630. doi 10.1016/j.molcel.2008.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xiang, Y.Z., Mao, S.L., Jia, R.L., et al., The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog, Plant Mol. Biol., 2005, vol. 58, pp. 53–64. doi 10.1007/s11103-005-4162-2

    Article  CAS  Google Scholar 

  110. Sugano, S., Andronis, C., Green, R.M., et al., Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 11020–11025. doi 10.1073/pnas.95.18.11020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Portolés, S. and Más, P., Altered oscillator function affects clock resonance and is responsible for the reduced day-length sensitivity of CKB4 overexpressing plants, Plant J., 2007, vol. 51, pp. 966–977. doi 10.1111/j.1365-313X.2007.03186.x

    Article  PubMed  CAS  Google Scholar 

  112. Ding, Z., Millar, A.J., Davis, A.M., et al., TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock, Plant Cell, 2007, vol. 19, pp. 1522–1536. doi 10.1105/tpc.106.047241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Para, A., Farré, E.M., Imaizumi, T., et al., PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock, Plant Cell, 2007, vol. 19, pp. 3462–3473. doi 10.1105/tpc.107.054775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nakamichi, N., Kiba, T., Henriques, R., et al., PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock, Plant Cell, 2010, vol. 22, pp. 594–605. doi 10.1105/tpc.109.072892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rawat, R., Takahashi, N., Hsu, P.Y., et al., REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock, PLoS Genet., 2011, vol. 7. e1001350. doi 10.1371/journal.pgen.1001350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Takase, T., Nishiyama, Y., Tanihigashi, H., et al., LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under noninductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1, Plant J., 2011, vol. 67, pp. 608–621. doi 10.1111/j.1365-313X.2011. 04618.x

    Article  CAS  PubMed  Google Scholar 

  117. Nelson, D.C., Lasswell, J., Rogg, L.E., et al., FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis, Cell, 2000, vol. 101, pp. 331–340. doi 10.1016/S0092-8674(00)80842-9

    Article  CAS  PubMed  Google Scholar 

  118. Somers, D.E., Kim, W., and Geng, R., The F-Box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time, Plant Cell, 2004, vol. 16, pp. 769–782. doi 10.1105/tpc.016808.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu, J.-F., Wang, Y., and Wu, S.-H., Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering, Plant Physiol., 2008, vol. 148, pp. 948–959. doi 10.1104/pp.108.124917

    Article  CAS  PubMed  Google Scholar 

  120. Milec, Z., Valárik, M., Bartoš, J., et al., Can a late bloomer become an early bird? Tools for flowering time adjustment, Biotechnol. Adv., 2014, vol. 32, pp. 200–214. doi 10.1016/j.biotechadv.2013.09.008

    Article  PubMed  Google Scholar 

  121. Zanke, C., Ling, J., Plieske, J., et al., Genetic architecture of main effect QTL for heading date in European winter wheat, Front. Plant Sci., 2014, vol. 5, pp. 1–12. doi 10.3389/fpls.2014.00217

    Article  Google Scholar 

  122. Bogard, M., Ravel, C., Paux, E., et al., Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model, J. Exp. Bot., 2014. doi 10.1093/jxb/eru328

    Google Scholar 

  123. Perez-Lara, E., Semagn, K., Chen, H., et al., QTLs associated with agronomic traits in the Cutler × AC Barrie spring wheat mapping population using single nucleotide polymorphic markers, PLoS One, 2016, vol. 11. e0160623. doi 10.1371/journal.pone.0160623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Milner, S.G., Maccaferri, M., Huang, B.E., et al., A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum), Plant Biotechnol. J., 2015, vol. 14, pp. 1–14. doi 10.1111/pbi.12424

    Google Scholar 

  125. Cao, L., Hayashi, K., Tokui, M., et al., Detection of QTLs for traits associated with pre-harvest sprouting resistance in bread wheat (Triticum aestivum L.), Breed. Sci., 2016, vol. 66, pp. 260–270. doi 10.1270/jsbbs.66.260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Shirdelmoghanloo, H., Taylor, J.D., Lohraseb, I., et al., A QTL on the short arm of wheat (Triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling, BMC Plant Biol., 2016, vol. 16, p. 100. doi 10.1186/s12870-016-0784-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Tahmasebi, S., Heidari, B., Pakniyat, H., et al., Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.), Genome, 2017, vol. 60, pp. 26–45. doi 10.1139/gen-2016-0017

    Article  CAS  PubMed  Google Scholar 

  128. Yu, M., Chen, G.-Y., Pu, Z.-E., et al., Quantitative trait locus mapping for growth duration and its timing components in wheat, Mol. Breed., 2015, vol. 35, p. 44. doi 10.1007/s11032-015-0201-0

    Article  CAS  Google Scholar 

  129. Zou, J., Semagn, K., Iqbal, M., et al., Mapping QTLs controlling agronomic traits in the ‘Attila’ × ‘CDC Go’ spring wheat population under organic management using 90K SNP array, Crop Sci., 2017, vol. 57, p. 365. doi 10.2135/cropsci2016.06.0459

    Article  CAS  Google Scholar 

  130. Zou, J., Semagn, K., Iqbal, M., et al., QTLs associated with agronomic traits in the Attila × CDC Go spring wheat population evaluated under conventional management, PLoS One, 2017, vol. 12. e0171528. doi 10.1371/journal.pone.0171528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Guo, Y., Du, Z., Chen, J., et al., QTL mapping of wheat plant architectural characteristics and their genetic relationship with seven QTLs conferring resistance to sheath blight, PLoS One, 2017, vol. 12. e0174939. doi 10.1371/journal.pone.0174939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Gerard, G.S., Börner, A., Lohwasser, U., et al., Genome-wide association mapping of genetic factors controlling Septoria tritici blotch resistance and their associations with plant height and heading date in wheat, Euphytica, 2017, vol. 213, p. 27. doi 10.1007/s10681-016-1820-1

    Article  CAS  Google Scholar 

  133. Takahashi, Y., Shomura, A., Sasaki, T., et al., Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 7922–7927. doi 10.1073/pnas.111136798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kiseleva, A.A., Shcherban, A.B., Leonova, I.N., et al., Identification of new heading date determinants in wheat 5B chromosome, BMC Plant Biol., 2016, vol. 16(s1), pp. 35–46. doi 10.1186/s12870-015-0688-x

    Article  CAS  Google Scholar 

  135. Suge, H. and Yamada, N., Flower-promoting effect of gibberellin in winter wheat and barley, Plant Cell Physiol., 1965, vol. 6, pp. 147–160.

    Article  CAS  Google Scholar 

  136. Wilson, R.N., Heckman, J.W., and Somerville, C.R., Gibberellin is required for flowering in Arabidopsis thaliana under short days, Plant Physiol., 1992, vol. 100, pp. 403–408. doi 10.1104/pp.100.1.403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, A., Liu, D., Wu, J., et al., mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat, Plant Cell Online, 2014, vol. 26, pp. 1878–1900. doi 10.1105/tpc.114.124388

    Article  CAS  Google Scholar 

  138. Kitagawa, S., Shimada, S., and Murai, K., Effect of Ppd-1 on the expression of flowering-time genes in vegetative and reproductive growth stages of wheat, Genes Genet. Syst., 2012, vol. 87, pp. 161–168.

    Article  CAS  PubMed  Google Scholar 

  139. Li, C., Lin, H., and Dubcovsky, J., Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley, Plant J., 2015, vol. 84, pp. 70–82. doi 10.1111/tpj.12960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen, F., Gao, M., Zhang, J., et al., Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China, BMC Plant Biol., 2013, vol. 13, p. 199. doi 10.1186/1471-2229-13-199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Lysenko, N.S., Kiseleva, A.A., Mitrofanova, O.P., et al., VIR World Collection Catalogue: Bread Wheat. Molecular Testing of the Vrn and Ppd Alleles in the Selection Varieties Approved for Use in the Russian Federation, St. Petersburg: VIR, 2014.

    Google Scholar 

  142. Zhang, X.K., Xiao, Y.G., Zhang, Y., et al., Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit, Crop Sci., 2008, vol. 48, pp. 458–470. doi 10.2135/cropsci2007.06.0355

    CAS  Google Scholar 

  143. Iqbal, M., Shahzad, A., and Ahmed, I., Allelic variation at the Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3 and Ppd-D1a loci of Pakistani spring wheat cultivars, Electron. J. Biotechnol., 2001, vol. 14, pp. 1–8. doi 10.2225/vol14-issue1-fulltext-6

    Google Scholar 

  144. Lv, B., Nitcher, R., Han, X., et al., Characterization of FLOWERING LOCUS T1 (FT1) gene in brachypodium and wheat, PLoS One, 2014, vol. 9. e94171. doi 10.1371/journal.pone.0094171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. An, H., Roussot, C., Suárez-López, P., et al., CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis, Development, 2004, vol. 131, pp. 3615–3626. doi 10.1242/dev.01231

    Article  CAS  PubMed  Google Scholar 

  146. Wenkel, S., Turck, F., Singer, K., et al., CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis, Plant Cell, 2006, vol. 18, pp. 2971–2984. doi 10.1105/tpc.106.043299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Alqudah, A.M., Sharma, R., Pasam, R.K., et al., Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley, PLoS One, 2014, vol. 9. e113120. doi 10.1371/journal. pone.0113120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Yang, S., Murphy, R.L., Morishige, D.T., et al., Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12, PLoS One, 2014, vol. 9. e105352. doi 10.1371/journal. pone.0105352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Wang, J.W., Regulation of flowering time by the miR156-mediated age pathway, J. Exp. Bot., 2014, vol. 65, pp. 4723–4730. doi 10.1093/jxb/eru246

    Article  CAS  PubMed  Google Scholar 

  150. Takeda, T., Toyofuku, K., Matsukura, C., et al., Sugar transporters involved in flowering and grain development of rice, J. Plant Physiol., 2001, vol. 158, pp. 465–470. doi 10.1078/0176-1617-00358

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kiseleva.

Additional information

Original Russian Text © A.A. Kiseleva, E.A. Salina, 2018, published in Genetika, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, A.A., Salina, E.A. Genetic Regulation of Common Wheat Heading Time. Russ J Genet 54, 375–388 (2018). https://doi.org/10.1134/S1022795418030067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418030067

Keywords

Navigation