Russian Journal of Genetics

, Volume 54, Issue 1, pp 12–26 | Cite as

Genes of the Histamine Pathway and Common Diseases

  • A. N. Kucher
  • N. A. Cherevko
Reviews and Theoretical Articles


The review focuses on the functional role of histamine and the genetic factors involved in maintaining the physiological level of this amine in the organism, as well as on the involvement of histamine and genes of the histamine pathway in the development of several common diseases. Histamine is a biogenic amine with a wide range of competencies, the physiological effects of which are realized with the help of four types of receptors (HRH1, HRH2, HRH3, and HRH4), characterized by tissue-specific expression. The key genes responsible for maintaining the physiological level of histamine are HDC (responsible for the synthesis of endogenous histamine), AOC1, HNMT, MAOB, and ALDH7A1 (involved in the degradation of histamine and its metabolites). However, in total, according to Gene Ontology, proteins and enzymes encoded by more than 200 genes are involved in the histamine pathway. Both temporal and chronic imbalances between the synthesis/intake of histamine and its degradation/metabolism in the human body (including those caused by specific genetic features) mediate the development of inflammatory manifestations with disturbance of the homeostasis of various organ systems (nervous, immune, endocrine, cardiovascular, etc.). Immunopathologic reactions mediated by histamine accompany the development of antigen-specific and nonspecific immediate and delayed-type hypersensitivity reactions of inflammation, effector immunocomplex reactions, autoimmune disorders, and cancer and, ultimately, can determine the comorbidity of common diseases. The review also provides information on the associations of the genes of the histamine pathway with common diseases (according to the studies using the candidate-gene approach and genome-wide association studies).


genetics of common diseases histamine genes of the histamine pathway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maintz, L. and Novak, N., Histamine and histamine intolerance, Am. J. Clin. Nutr., 2007, vol. 85, pp. 1185–1196.CrossRefPubMedGoogle Scholar
  2. 2.
    Smuda, C. and Bryce, P.J., New developments in the use of histamine and histamine receptors, Curr. Allergy Asthma Rep., 2011, vol. 11, no. 2, pp. 94–100. doi 10.1007/s11882-010-0163-6CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Diaz, M., del Rio, B., Ladero, V., et al., Isolation and typification of histamine-producing Lactobacillus vaginalis strains from cheese, Int. J. Food. Microbiol., 2015, vol. 215, pp. 117–123. doi 10.1016/j.ijfoodmicro. 2015.08.026CrossRefPubMedGoogle Scholar
  4. 4.
    Murdoch, R.D., Lessof, M.H., Pollock, I., and Young, E., The effects of food additives on leukocyte histamine release in normal and urticarial subjects, J. R. Coll. Physicians (London), 1987, vol. 21, pp. 251–256.Google Scholar
  5. 5.
    Ortolani, C. and Pastorello, E.A., Food allergies and food intolerances, Best Pract. Res. Clin. Gastroenterol., 2006, vol. 20, no. 3, pp. 467–483. doi 10.1016/j.bpg. 2005.11.010CrossRefPubMedGoogle Scholar
  6. 6.
    Akdis, C.A. and Simons, F.E., Histamine receptors are hot in immunopharmacology, Eur. J. Pharmacol., 2006, vol. 8, no. 533, (1–3), pp. 69–76. doi 10.1016/j.ejphar.2005.12.044CrossRefGoogle Scholar
  7. 7.
    Wang, K.Y., Tanimoto, A., Yamada, S., et al., Histamine regulation in glucose and lipid metabolism via histamine receptors: model for nonalcoholic steatohepatitis in mice, Am. J. Pathol., 2010, vol. 177, no. 2, pp. 713–723. doi 10.2353/ajpath.2010.091198CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rozenberg, I., Sluka, S.H., Rohrer, L., et al., Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for lowdensity lipoproteins, Arterioscler. Thromb. Vasc. Biol., 2010, vol. 30, no. 5, pp. 923–930. doi 10.1161/ATVBAHA. 109.201079CrossRefPubMedGoogle Scholar
  9. 9.
    Ohtsu, H., Pathophysiologic role of histamine: evidence clarified by histidine decarboxylase gene knockout mice, Int. Arch. Allergy Immunol., 2012, vol. 158, suppl. 1, pp. 2–6. doi 10.1159/000337735CrossRefPubMedGoogle Scholar
  10. 10.
    Yamada, S., Tanimoto, A., and Sasaguri, Y., Critical in vivo roles of histamine and histamine receptor signaling in animal models of metabolic syndrome, Pathol. Int., 2016, vol. 66, no. 12, pp. 661–671. doi 10.1111/pin.12477CrossRefPubMedGoogle Scholar
  11. 11.
    UniProt. December 2016.Google Scholar
  12. 12.
    NCBI. December 2016.Google Scholar
  13. 13.
    Klocker, J., Mätzler, S.A., Huetz, G.N., et al., Expression of histamine degrading enzymes in porcine tissues, Inflamm. Res., 2005, vol. 54, suppl. 1, pp. S54–D57. doi 10.1007/s00011-004-0425-7CrossRefPubMedGoogle Scholar
  14. 14.
    Zaitsev, V.G. and Zheltova, A.A., Histamine intolerance and diamino oxidase activity: problems of virtual screening, Ross. Immunol. Zh., 2016, vol. 10(19), no. 2(1), pp. 553–554.Google Scholar
  15. 15.
    Sander, L.E., Lorentz, A., Sellge, G., et al., Selective expression of histamine receptors H1R, H2R, and H4R, but not H3R, in the human intestinal tract, Gut, 2006, vol. 55, no. 4, pp. 498–504. doi 10.1136/gut.2004.061762CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sapozhnikov, M.Yu., Dynamics of the content of biologically active substances in peripheral blood neutrophils in patients with ischemic heart disease during the course of laser therapy, Kazan. Med. Zh., 2012, vol. 93, no. 1, pp. 22–25.Google Scholar
  17. 17.
    Tanimoto, A., Sasaguri, Y., and Ohtsu, H., Histamine network in atherosclerosis, Trends Cardiovasc. Med., 2006, vol. 16, no. 8, pp. 280–284. doi 10.1016/j.tcm.2006.06.001CrossRefPubMedGoogle Scholar
  18. 18.
    Panja, S.K., Bhattacharya, B., and Lahiri, S.C., Role of histamine as a toxic mediator in the pathogenesis of vitiligo, Indian J. Dermatol., 2013, vol. 58, no. 6, pp. 421–428. doi 10.4103/0019-5154.119947CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gene Ontology. December 2016.Google Scholar
  20. 20.
    Losol, P., Yoo, H.S., and Park, H.S., Molecular genetic mechanisms of chronic urticaria, Allergy Asthma Immunol. Res., 2014, vol. 6, no. 1, pp. 13–21. doi 10.4168/aair.2014.6.1.13CrossRefPubMedGoogle Scholar
  21. 21.
    Hosseini Farahabadi, S., Tavakkol-Afshari, J., Ganjali, R., et al., Association between the polymorphism of TGFbeta1 gene promoter (–509C>T) and idiopathic chronic urticaria, Iran. J. Allergy Asthma Immunol., 2006, vol. 5, no. 3, pp. 109–113. 05.03/ijaai.109113PubMedGoogle Scholar
  22. 22.
    García-Martín, E., García-Menayaw, J., Sanchezz, B., et al., Polymorphisms of histamine-metabolizing enzymes and clinical manifestations of asthma and allergic rhinitis, Clin. Exp. Allergy, 2007, vol. 37, pp. 1175–1182. doi 10.1111/j.1365-2222.2007.02769.xCrossRefPubMedGoogle Scholar
  23. 23.
    Kennedy, M.J., Loehle, J.A., Griffin, A.R., et al., Association of the histamine N-methyltransferase C314T (Thr105Ile) polymorphism with atopic dermatitis in Caucasian children, Pharmacotherapy, 2008, vol. 28, no. 12, pp. 1495–1501. doi 10.1592/phco.28. 12.1495CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Palikhe, N., Kim, S.H., Yang, E.M., et al., Analysis of high-affinity IgE receptor (FcepsilonR1) polymorphisms in patients with aspirin-intolerant chronic urticaria, Allergy Asthma Proc., 2008, vol. 29, no. 3, pp. 250–257. doi 10.2500/aap.2008.29.3116CrossRefPubMedGoogle Scholar
  25. 25.
    Kim, S.H., Kang, Y.M., Kim, S.H., et al., Histamine N-methyltransferase 939A>G polymorphism affects mRNA stability in patients with acetylsalicylic acidintolerant chronic urticaria, Allergy, 2009, vol. 64, no. 2, pp. 213–221. doi 10.1111/j.1398-9995.2008.01795.xCrossRefPubMedGoogle Scholar
  26. 26.
    Chen, L., Pawlikowski, B., Schlessinger, A., et al., Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin, Pharmacogenet. Genomics, 2010, vol. 20, no. 11, pp. 687–699. doi 10.1097/FPC.0b013e32833fe789CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gervasini, G., Agundez, J.A.G., García-Menaya, J., et al., Variability of the L-histidine decarboxylase gene in allergic rhinitis, Allergy, 2010, vol. 65, pp. 1576–1584. doi 10.1111/j.1398-9995.2010.02425.xCrossRefPubMedGoogle Scholar
  28. 28.
    Kim, S.-H., Nam, E.-J., Kim, Y.-K., et al., Park functional variability of the adenosine A3 receptor (ADORA3) gene polymorphism in aspirin-induced urticaria, Br. J. Dermatol., 2010, vol. 163, no. 5, pp. 977–985. doi 10.1111/j.1365-2133.2010.09983.xCrossRefPubMedGoogle Scholar
  29. 29.
    Stevenson, J., Sonuga-Barke, E., McCann, D., et al., The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children’s ADHD symptoms, Am. J. Psychiatry, 2010, vol. 167, no. 9, pp. 1108–1115. doi 10.1176/appi.ajp.2010. 09101529CrossRefPubMedGoogle Scholar
  30. 30.
    Yu, B., Shao, Y., Li, P., et al., Copy number variations of the human histamine H4 receptor gene are associated with systemic lupus erythematosus, Br. J. Dermatol., 2010, vol. 163, no. 5, pp. 935–940. doi 10.1111/j.1365-2133.2010.09928.xCrossRefPubMedGoogle Scholar
  31. 31.
    Vehof, J., Risselada, A.J., Al Hadithy, A.F., et al., Association of genetic variants of the histamine H1 and muscarinic M3 receptors with BMI and HbA1c values in patients on antipsychotic medication, Psychopharmacology (Berlin), 2011, vol. 216, no. 2, pp. 257–265. doi 10.1007/s00213-011-2211-xCrossRefGoogle Scholar
  32. 32.
    Chen, B., Ye, T., Shao, Y., et al., Association between copy-number variations of the human histamine H4 receptor gene and atopic dermatitis in a Chinese population, Clin. Exp. Dermatol., 2013, vol. 38, no. 3, pp. 295–300. doi 10.1111/ced.12117CrossRefPubMedGoogle Scholar
  33. 33.
    He, G.H., Lu, J., Shi, P.P., et al., Polymorphisms of human histamine receptor H4 gene are associated with breast cancer in Chinese Han population, Gene, 2013, vol. 519, no. 2, pp. 260–265. doi 10.1016/j.gene.2013.02.020CrossRefPubMedGoogle Scholar
  34. 34.
    Karagiannidis, I., Dehning, S., Sandor, P., et al., Support of the histaminergic hypothesis in Tourette syndrome: association of the histamine decarboxylase gene in a large sample of families, J. Med. Genet., 2013, vol. 50, no. 11, pp. 760–764. doi 10.1136/jmedgenet-2013-101637CrossRefPubMedGoogle Scholar
  35. 35.
    García-Martín, E., Martínez, C., Serrador, M., et al., Diamine oxidase rs10156191 and rs2052129 variants are associated with the risk for migraine, Headache, 2015, vol. 55, no. 2, pp. 276–286. doi 10.1111/head.12493CrossRefPubMedGoogle Scholar
  36. 36.
    He, G.H., Cai, W.K., Meng, J.R., et al., Relation of polymorphism of the histidine decarboxylase gene to chronic heart failure in Han Chinese., Am. J. Cardiol., 2015, vol. 115, no. 11, pp. 1555–1562. doi 10.1016/j.amjcard.2015.02.062CrossRefPubMedGoogle Scholar
  37. 37.
    Li, L., He, M., Zhou, L., et al., A solute carrier family 22 member 3 variant rs3088442 G→A associated with coronary heart disease inhibits lipopolysaccharideinduced inflammatory response, J. Biol. Chem., 2015, vol. 290, no. 9, pp. 5328–5340. doi 10.1074/jbc.M114.584953CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liao, E.C., Chang, C.Y., Hsieh, C.W., et al., An exploratory pilot study of genetic marker for IgE-mediated allergic diseases with expressions of FcεR1α and Cε, Int. J. Mol. Sci., 2015, vol. 16, no. 5, pp. 9504–9519. doi 10.3390/ijms16059504CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Raje, N., Vyhlidal, C.A., Dai, H., and Jones, B.L., Genetic variation within the histamine pathway among patients with asthma—a pilot study, J. Asthma, 2015, vol. 52, no. 4, pp. 353–362. doi 10.3109/02770903.2014.973501CrossRefPubMedGoogle Scholar
  40. 40.
    Amo, G., Cornejo-García, J.A., García-Menaya, J.M., et al., FCERI and histamine metabolism gene variability in selective responders to NSAIDS, Front. Pharmacol., 2016, vol. 7, p. 353. doi 10.3389/fphar.2016.00353CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    He, G.H., Cai, W.K., Zhang, J.B., et al., Associations of polymorphisms in HRH2, HRH3, DAO, and HNMT genes with risk of chronic heart failure, Biomed. Res. Int., 2016, vol. 2016, article ID 1208476. doi 10.1155/2016/1208476Google Scholar
  42. 42.
    Jiménez-Jiménez, F.J., Alonso-Navarro, H., García-Martín, E., and Agúndez, J.A., Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease: a PRISMA-compliant systematic review and meta-analysis., Medicine (Baltimore), 2016, vol. 95, no. 27:e4147. doi 10.1097/MD.0000000000004147CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Meza-Velázquez, R., López-Márquez, F., Espinosa-Padilla, S., et al., Association between two polymorphisms of histamine-metabolising enzymes and the severity of allergic rhinitis in a group of Mexican children, Allergol. Immunopathol. (Madrid), 2016, vol. 44, no. 5, pp. 433–438. doi 10.1016/j.aller.2016.01.002CrossRefGoogle Scholar
  44. 44.
    Castellan Baldan, L., Williams, K.A., Gallezot, J.D., et al., Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice, Neuron, 2014, vol. 81, no. 1, pp. 77–90. doi 10.1016/j.neuron.2013.10.052CrossRefGoogle Scholar
  45. 45.
    Kowalska, A., Midro, A.T., Janik, P., et al., W poszukiwaniu genu zespołu Tourette’a: Część 2. Zmienność genomu chorych, Postepy Hig. Med. Dosw., 2012, vol. 66, pp. 89–95.Google Scholar
  46. 46.
    Ayuso, P., García-Martín, E., Martínez, C., and Agúndez, J.A., Genetic variability of human diamine oxidase: occurrence of three nonsynonymous polymorphisms and study of their effect on serum enzyme activity, Pharmacogenet. Genomics, 2007, vol. 17, pp. 687–693. doi 10.1097/FPC.0b013e328012b8e4CrossRefPubMedGoogle Scholar
  47. 47.
    Maintz, L., Yu, C.F., Rodríguez, E., et al., Association of single nucleotide polymorphisms in the diamine oxidase gene with diamine oxidase serum activities, Allergy, 2011, vol. 66, no. 7, pp. 893–902. doi 10.1111/j.1398-9995.2011.02548.xCrossRefPubMedGoogle Scholar
  48. 48.
    Meza-Velázquez, R., López-Márquez, F., Espinosa-Padilla, S., et al., Association of diamine oxidase and histamine N-methyltransferase polymorphisms with presence of migraine in a group of Mexican mothers of children with allergies, Neurologia, 2016. pii: S0213-4853(16)30012-3. doi 10.1016/j.nrl.2016.02.025Google Scholar
  49. 49.
    Manzotti, G., Breda, D., Di Gioacchino, M., and Burastero, S.E., Serum diamine oxidase activity in patients with histamine intolerance, Int. J. Immunopathol. Pharmacol., 2016, vol. 29, no. 1, pp. 105–111. doi 10.1177/0394632015617170CrossRefPubMedGoogle Scholar
  50. 50.
    Kimura, S., Tanimoto, A., Wang, K.Y., et al., Expression of macrophage-derived chemokine (CCL22) in atherosclerosis and regulation by histamine via the H2 receptor, Pathol. Int., 2012, vol. 62, no. 10, vol. 675—683. doi 10.1111/j.1440-1827.2012.02854.xGoogle Scholar
  51. 51.
    Chung, B.Y., Cho, S.I., Ahn, I.S., et al., Treatment of atopic dermatitis with a low-histamine diet, Ann. Dermatol., 2011, vol. 23, suppl. 1, pp. S91–S95. doi 10.5021/ad.2011.23.S1.S91CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kovacova-Hanuskova, E., Buday, T., Gavliakova, S., and Plevkova, J., Histamine, histamine intoxication and intolerance, Allergol. Immunopathol. (Madrid), 2015, vol. 43, no. 5, pp. 498–506. doi 10.1016/j.aller.2015.05.001CrossRefGoogle Scholar
  53. 53.
    Schirmer, B., Rezniczek, T., Seifert, R., and Neumann, D., Proinflammatory role of the histamine H4 receptor in dextrane sodium sulfate-induced acute colitis, Biochem. Pharmacol., 2015, vol. 98, no. 1, pp. 102–109. doi 10.1016/j.bcp.2015.09.006CrossRefPubMedGoogle Scholar
  54. 54.
    Chen, G.L., Wang, W., Xu, Z.H., et al., Genotype—phenotype correlation for histamine N-methyltransferase in a Chinese Han population, Clin. Chim. Acta, 2003, vol. 334, nos. 1–2, pp. 179–183.CrossRefPubMedGoogle Scholar
  55. 55.
    Welter, D., MacArthur, J., Morales, J., et al., The NHGRI GWAS Catalog, a curated resource of SNPtrait associations, Nucleic Acids Res., 2014, vol. 42, database issue, pp. D1001–D1006. doi 10.1093/nar/gkt1229CrossRefPubMedGoogle Scholar
  56. 56.
    The NHGRI-EBI catalog of published genome-wide association studies, version v1.0.1. uk/gwas. Accessed December 2016.Google Scholar
  57. 57.
    Barker, E., Kõlves, K., and De Leo, D., The relationship between asthma and suicidal behaviours: a systematic literature review, Eur. Respir. J., 2015, vol. 46, no. 1, pp. 96–106. doi 10.1183/09031936.00011415CrossRefPubMedGoogle Scholar
  58. 58.
    Pedersen, M.S., Benros, M.E., Agerbo, E., et al., Schizophrenia in patients with atopic disorders with particular emphasis on asthma: a Danish populationbased study, Schizophr. Res., 2012, vol. 138, no. 1, pp. 58–62. doi 10.1016/j.schres.2012.02.019CrossRefPubMedGoogle Scholar
  59. 59.
    Viktorov, Yu.N. and Artem’eva, E.G., Gastric mucosa levels of biogenic amines and the immunity indices in patients with chronic gastritis, Med. Al’manakh, 2010, no. 3, pp. 141–146.Google Scholar
  60. 60.
    Vakhobzoda, P., Dustov, A., and Sharipov, V.Sh., Syndrome of chronic duodenal obstruction (questions of pathogenesis and diagnosis), Izv. Akad. Nauk Resp. Tadzh., 2013, nos. 3—4, pp. 56–61.Google Scholar
  61. 61.
    Yang, X.D., Ai, W., Asfaha, S., et al., Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells, Nat. Med., 2011, vol. 17, no. 1, pp. 87–95. doi 10.1038/nm. 2278CrossRefPubMedGoogle Scholar
  62. 62.
    Figueiredo, J.C., Hsu, L., Hutter, C.M., et al., Genome-wide diet—gene interaction analyses for risk of colorectal cancer, PLoS Genet., 2014, vol. 10, no. 4. e1004228. doi 10.1371/journal.pgen.1004228CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Artemenko, A.I., The content of biogenic amines of histamine and serotonin in the lung tissue of people who suddenly died from chronic ischemic heart disease, Zagal’na Patol. Patol. Fiziol., 2014, vol. 9, no. 2, pp. 77–79.Google Scholar
  64. 64.
    Lutsenko, M.T. and Shmatok, M.I., Morphological and functional characteristics of the gastric mucosa in patients with bronchial asthma, Byul. Fiziol. Patol. Dykhaniya, 2008, no. 28, pp. 46–50.Google Scholar
  65. 65.
    Deng, L., Hong, T., Lin, J., et al., Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis, Sci. Rep., 2015, vol. 5: 13131. doi 10.1038/srep13131CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Online Mendelian Inheritance in Man. December 2016.Google Scholar
  67. 67.
    Puzyrev, V.P. and Kucher, A.N., Evolutionary ontogenetic aspects of pathogenetics of chronic human diseases, Russ. J. Genet., 2011, vol. 47, no. 12, pp. 1395–1405. Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Research Institute of Medical Genetics, Tomsk National Research Medical CenterRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Siberian State Medical UniversityTomskRussia

Personalised recommendations