Skip to main content
Log in

LkAP2L2, an AP2/ERF transcription factor gene of Larix kaempferi, with pleiotropic roles in plant branch and seed development

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Larix kaempferi is an economically and ecologically valuable afforestation and timber species. However, functional genes participating in its growth and development remain largely unknown because of its long growth cycle and highly complex genetic background. In this study, LkAP2L2, an AP2/ERF transcription factor gene, was identified and the characteristics and functions of LkAP2L2 were further explored. The cDNA of LkAP2L2, with a length of 2124 bp, encodes a transcription factor comprising 707 amino acid residues. LkAP2L2 was further introduced into Arabidopsis genome using the Agrobacterium tumefaciens transformation method. The shoot branching phenotype of LkAP2L2-overexpressing Arabidopsis was enhanced. The number of their branches was almost twice as high as that of the vector control plants. In contrast to those on bushier branches, the size and number of rosette leaves were decreased by LkAP2L2 overexpression. In particular, the length of the fifth rosette leaves was shorter by approximately 17% in 35S::LkAP2L2 plants, and the number of rosette leaves was approximately 70% of that of the vector control. In addition, the length of silique was decreased by a half compared with the vector control plants, and no more than 4 seeds per silique were detected in the transgenic plants. The length of siliques and the number of seeds are decreased by LkAP2L2 through its influence on flower development. Therefore, LkAP2L2 of L. kaempferi plays a crucial role in branch, flower, silique and seed development, and this gene may be manipulated to obtain the bushy phenotype of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riechmann, J.L. and Meyerowitz, E.M., The AP2/EREBP family of plant transcription factors, Biol. Chem., 1998, vol. 379, no. 6, pp. 633–646.

    CAS  PubMed  Google Scholar 

  2. Kavai-ool, U.N., Karpenko, O.Iu., and Ezhova, T.A., Interaction between the ABRUPTUS/PINOID and APETALA1 genes regulating the inflorescence development in Arabidopsis thaliana, Russ. J. Genet., 2010, vol. 46, no. 3, pp. 331–339.

    Article  CAS  Google Scholar 

  3. Maes, T., Van de Steene, N., Zethof, J., et al., Petunia Ap2-like genes and their role in flower and seed development, Plant Cell, 2001, vol. 13, no. 2, pp. 229–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuluev, B.R., Kniazev, A.V., Iliasova, A.A., et al., Ectopic expression of the PnANTL1 and PnANTL2 black poplar genes in transgenic tobacco plants, Russ. J. Genet., 2012, vol. 48, no. 10, pp. 993–1000.

    Article  CAS  Google Scholar 

  5. Ohto, M.A., Fischer, R.L., Goldberg, R.B., et al., Control of seed mass by APETALA2, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 8, pp. 3123–3128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Modrusan, Z., Reiser, L., Feldmann, K.A., et al., Homeotic transformation of ovules into carpel-like structures in Arabidopsis, Plant Cell, 1994, vol. 6, no. 3, pp. 333–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Angenent, G.C. and de Maagd, R.A., Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening, Plant Cell, 2011, vol. 23, no. 3, pp. 923–941.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leon-Kloosterziel, K.M., Keijzer, C.J., and Koornneef, M., A seed shape mutant of Arabidopsis that is affected in integument development, Plant Cell, 1994, vol. 6, no. 3, pp. 385–392.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alieva, A.J. and Aminov, N.Kh., Influence of D genome of wheat on expression of novel type spike branching in hybrid populations of 171ACS line, Russ. J. Genet., 2013, vol. 49, no. 11, pp. 1119–1126.

    Article  CAS  Google Scholar 

  10. Albert, E.V. and Ezhova, T.A., Genetic regulation of plant shoot stem cells, Russ. J. Genet., 2013, vol. 49, no. 2, pp. 127–140.

    Article  CAS  Google Scholar 

  11. Doebley, J., Stec, A., and Hubbard, L., The evolution of apical dominance in maize, Nature, 1997, vol. 386, no. 6624, pp. 485–488.

    Article  CAS  PubMed  Google Scholar 

  12. Takeda, T., Suwa, Y., Suzuki, M., et al., The OsTB1 gene negatively regulates lateral branching in rice, Plant J., 2003, vol. 33, no. 3, pp. 513–520.

    Article  CAS  PubMed  Google Scholar 

  13. Nakagawa, H., Jiang, C.J., Sakakibara, H., et al., Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms, Plant J., 2005, vol. 41, no. 4, pp. 512–523.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, H.F. and Kranz, R.G., A nitrogen-regulated glutamine amidotransferase (GAT1_2.1) represses shoot branching in Arabidopsis, Plant Physiol., 2012, vol. 160, no. 4, pp. 1770–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muller, D., Schmitz, G., and Theres, K., Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis, Plant Cell, 2006, vol. 18, no. 3, pp. 586–597.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Skirycz, A., Jozefczuk, S., Stobiecki, M., et al., Transcription factor AtDOF4.2 affects phenylpropanoid metabolism in Arabidopsis thaliana, New Phytol., 2007, vol. 175, no. 3, pp. 425–438.

    Article  CAS  PubMed  Google Scholar 

  17. Zou, H.F., Zhang, Y.Q., Wei, W., et al., The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis, Biochem. J., 2013, vol. 449, no. 2, pp. 373–388.

    Article  CAS  PubMed  Google Scholar 

  18. Mehrnia, M., Balazadeh, S., Zanor, M.I., et al., EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis, Plant Physiol., 2013, vol. 162, no. 2, pp. 842–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, A., Zhou, Y.N., Jin, C., et al, LaAP2L1, a heterosisassociated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis, Plant Cell Physiol., 2013, vol. 54, no. 11, pp. 1822–1836.

    Article  CAS  PubMed  Google Scholar 

  20. Clough, S.J. and Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J., 1998, vol. 16, no. 6, pp. 735–743.

    Article  CAS  PubMed  Google Scholar 

  21. Aukerman, M.J. and Sakai, H., Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes, Plant Cell, 2003, vol. 15, no. 11, pp. 2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, X., A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development, Science, 2004, vol. 303, no. 5666, pp. 2022–2025.

    Article  CAS  PubMed  Google Scholar 

  23. Lauter, N., Kampani, A., Carlson, S., et al., microRNA172 down-regulates glossy15 to promote vegetative phase change in maize, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 26, pp. 9412–9417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, B., Pan, X., Cannon, C.H., et al., Conservation and divergence of plant miRNA genes, Plant J., 2006, vol. 46, no. 2, pp. 243–259.

    Article  CAS  PubMed  Google Scholar 

  25. Domagalska, M.A. and Leyser, O., Signal integration in the control of shoot branching, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, no. 4, pp. 211–221.

    Article  CAS  PubMed  Google Scholar 

  26. Guo, D., Zhang, J., Wang, X., et al., The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis, Plant Cell, 2015, vol. 27, no. 11, pp. 3112–3127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ratcliffe, O.J., Amaya, I., Vincent, C.A., et al, A common mechanism controls the life cycle and architecture of plants, Development, 1998, vol. 125, no. 9, pp. 1609–1615.

    CAS  PubMed  Google Scholar 

  28. Weng, L., Bai, X., Zhao, F., et al., Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2, Plant Biotechnol. J., 2016, doi 10.1111/pbi.12584

    Google Scholar 

  29. Goldberg, R.B., de Paiva, G., and Yadegari, R., Plant embryogenesis: zygote to seed, Science, 1994, vol. 266, no. 5185, pp. 605–614.

    Article  CAS  PubMed  Google Scholar 

  30. Le, B.H., Cheng, C., Bui, A.Q., et al., Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 18, pp. 8063–8070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Upadhyaya, H.D., Sharma, S., and Gowda, C.L., Major genes with additive effects for seed size in kabuli chickpea (Cicer arietinum L.), J. Genet., 2011, vol. 90, no. 3, pp. 479–482.

    Article  CAS  PubMed  Google Scholar 

  32. Dargahi, H., Tanya, P., and Srinives, P., Mapping of the genomic regions controlling seed storability in soybean (Glycine max L.), J. Genet., 2014, vol. 93, no. 2, pp. 365–370.

    Article  CAS  PubMed  Google Scholar 

  33. Jofuku, K.D., Omidyar, P.K., Gee, Z., et al., Control of seed mass and seed yield by the floral homeotic gene APETALA2, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 8, pp. 3117–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohto, M.A., Floyd, S.K., Fischer, R.L., et al., Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis, Sex. Plant Reprod., 2009, vol. 22, no. 4, pp. 277–289.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Penin, A.A., Budaev, R.A., and Ezhova, T.A., Interaction of the BRACTEA gene with the TERMINAL FLOWER1, LEAFY, and APETALA1 genes during inflorescence and flower development in Arabidopsis thaliana, Russ. J. Genet., 2007, vol. 43, no. 3, pp. 287–293.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Li.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Yu, X., Cao, B.B. et al. LkAP2L2, an AP2/ERF transcription factor gene of Larix kaempferi, with pleiotropic roles in plant branch and seed development. Russ J Genet 53, 1335–1342 (2017). https://doi.org/10.1134/S1022795417120079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417120079

Keywords

Navigation