Skip to main content
Log in

Molecular characterization and expression analysis of pathogenesis related protein 6 from Panax ginseng

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Panax ginseng Meyer is one of the important medicinal plants in the world, particularly in Asian countries. Ginseng encounters many stress exposure during its long cultivation period. However, the molecular mechanism of stress resistance is still poorly understood in spite of its importance. In this study, pathogenesis-related protein 6 (PR6), also called proteinase inhibitor (PI), was isolated from ginseng embryogenic callus, named PgPR6. The small size of PR6, containing an open reading frame of 219 bp encoding 72 amino acids, the typical characteristic of PR6 protein, shares the highest sequence similarity to PR6 of Theobroma cacao (69% identity). Sequence and structural analysis indicated that PgPR6 belongs to class Kunitz-type PI family. This is the first report pertaining to the identification of PR6 gene from the P. ginseng genome. The high-level expression of PgPR6 was observed in root as revealed by quantitative real-time PCR. The temporal expression analysis demonstrated that PgPR6 expression was highly up-regulated by signaling molecules, heavy metals, mechanical wounding, chilling, salt, sucrose, and mannitol stress, indicating that PgPR6 may play an important role in the molecular defense response of ginseng to a various range of environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sarowar, S., Kim, Y.J., Kim, E.N., Kim, K.D., et al., Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses, Plant Cell Rep., 2005, vol. 24, no. 4, pp. 216–224.

    Article  CAS  PubMed  Google Scholar 

  2. Niderman, T., Genetet, I., Bruyere, T., Gees, R., et al., Pathogenesis-related PR-1 proteins are antifungal (isolation and characterization of three 14-kilodalton proteins of tomato and of basic PR-1 of tobacco with inhibitory activity against Phytophtora infestans), Plant Physiol.,1995, vol. 108, no. 1, pp. 17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sinha, M., Singh, R.P., Kushwaha, G.S., Iqbal, N., et al., Current overview of allergens of plant pathogenesis related protein families, Sci. World J., 2014, vol. 2014, no. 2014, pp. 1–19.

    Google Scholar 

  4. Sels, J., Mathys, J., Coninck B.M.A.De., Cammue, B.P.A., et al., Plant pathogenesis-related (PR) proteins: a focus on PR peptides, Plant Physiol. Biochem., 2008, vol. 46, no. 11, pp. 941–950.

    Article  CAS  PubMed  Google Scholar 

  5. Rakwal, R., Agrawal, G.K., and Jwa, N.S., Characterization of a rice (Oryza sativa L.) Bowman—Birk proteinase inhibitor: tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors, Gene., 2001, vol. 263, nos. 1—2, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  6. Kidric, M., Kos, J., and Sabotic, J., Proteases and their endogenous inhibitors in the plant response to abiotic stress, Bot. Serbica, 2014, vol. 31, pp. 139–158.

    Google Scholar 

  7. Oliva, M.L.V., Silva M.C.C., Sallai, R.C., Brito, V.M., et al., A novel subclassification for Kunitz proteinase inhibitor from leguminous seeds, Biochimie, 2010, vol. 92, no. 11, pp. 1667–1673.

    Article  CAS  PubMed  Google Scholar 

  8. Kuhar, K., Kansal, R., Mishra, A., Koundal, K.R., et al., Cloning, characterization and expression analysis of a novel gene encoding Kunitz-type protease inhibitor from Dolichos biflorus, Biotech., 2012, vol. 2, no. 3, pp. 199–209.

    Google Scholar 

  9. Dombrowski, J.E., Salt stress activation of woundrelated genes in tomato plants, Plant Physiol., 2003, vol. 132, no. 4, pp. 2098–2107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanchez-Hernandez, C., Martinez-Gallardo, N., Guerrero-Rangel, A., Valdes-Rodriguez, S., et al., Trypsin and α-amylase inhibitors are differentially induced in leaves of amaranth (Amaranthus hypochondriacus) in response to biotic and abiotic stress, Physiol. Plant., 2004, vol. 122, no. 2, pp. 254–264.

    Article  CAS  Google Scholar 

  11. Joshi, R.S., Tanpure, R.S, Singh, R.K., Gupta, V.S., et al., Resistance through inhibition: ectopic expression of serine protease inhibitor offers stress tolerance via delayed senescence in yeast cell, Biochem. Biophys. Res. Commun., 2014, vol. 452, no. 3, pp. 361–368.

    Article  CAS  PubMed  Google Scholar 

  12. Guerra, F. P., Reyes, L., Vergara-Jaque, A., Campos-Hernández, C., et al., Populus deltoides Kunitz trypsin inhibitor 3 confers metal tolerance and binds copper, revealing a new defensive role against heavy metal stress, Environ. Exp. Bot., 2015, vol. 115, pp. 28–37.

    Article  CAS  Google Scholar 

  13. Jamal, F., Pandey, P.K., Singh, D., and Ahmed, W., A Kunitz-type serine protease inhibitor from Butea monosperma seed and its influence on developmental physiology of Helicoverpa armigera, Process Biochem., 2014, vol. 50, no. 2015, pp. 311–316.

    Google Scholar 

  14. Zhang, H.Y., Xie, X.Z., Xu, Y.Z., and Wu, N.H., Isolation and functional assesment of tomato proteinase inhibitor II gene, Plant Physiol. Biochem., 2004, vol. 42, no. 5, pp. 437–444.

    Article  CAS  PubMed  Google Scholar 

  15. Konarev, A.V., Griffin, J., Konechnaya, G.Yu., and Shewrey, P.R., The distribution of serine proteinase inhibitors in seeds of the Asteridae, Phytochem., 2004, vol. 65, no. 22, pp. 3003–3020.

    Article  CAS  Google Scholar 

  16. Kim, Y.J., Lee, H.J., Jang, M.G., Kwon, W.S., et al., Cloning and characterization of pathogenesis-related protein 4 gene from Panax ginseng, Russ. J. Plant Phyiol., 2014, vol. 61, no. 5, pp. 664–671.

    Article  CAS  Google Scholar 

  17. Song, M., Yun, H.Y., Kim, Y.H., Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnate, J. Ginseng Res., 2014, vol. 38, no. 2, pp. 136–145.

    Article  PubMed  Google Scholar 

  18. Kim, Y.J., Jang, M.G., Lee, H.J., Jang, G.H., et al., Functional characterization of the pathogenesisrelated protein family 10 gene, PgPR10-4, from Panax ginseng in response to environmental stresses, Plant Cell Tiss. Organ Cult., 2014, vol. 118, no. 3, pp. 531–543.

    Article  CAS  Google Scholar 

  19. Sathiyamoorthy, S., In, J.G., Lee, B.S., Kwon, W.S., et al., In silico analysis for expressed sequence tags from embryogenic callus and flower buds of Panax ginseng C.A. Meyer, J. Ginseng Res., 2011, vol. 35, no. 1, pp. 21–30.

    Article  CAS  Google Scholar 

  20. Geourjon, C. and Deléage, G., SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments, Comput. Appl. Biosci., 1995, vol. 11, no. 6, pp. 681–684.

    CAS  PubMed  Google Scholar 

  21. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., et al., Clustal W and Clustal X version 2.0. Bioinf. Appl. Note, 2007, vol. 23, no. 21, pp. 2947–2948.

    Article  CAS  Google Scholar 

  22. Tamura, K., Dudley, J., Nei, M., and Kumar, S., Mega4: molecular ecolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  23. Walker, J.M., The Proteomics Protocols Handbook, Totowa, NJ: Humana, 2005.

    Book  Google Scholar 

  24. Atman, R., Brutlag, D., Karp, P., Lathrop, R., et al., Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, Stanford, California: AAAI, 1994, p. 28.

    Google Scholar 

  25. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, 2006, vol. 22, no. 2, pp. 195–201.

    Article  CAS  PubMed  Google Scholar 

  26. Haq, S.K. and Khan, R.H., Characterization of a proteinase inhibitor from Cajanus cajan (L.), J. Protein Chem., 2003, vol. 22, no. 6, pp. 543–553.

    Article  CAS  PubMed  Google Scholar 

  27. Macedo, M.L.R., Carcia, V.A., Freire, M.G.M., and Richardson, M., Characterization of a Kunitz trypsin inhibitor with a single disulfide bridge from seeds of Inga laurina (SW.) Willd, Phytochem., 2007, vol. 68, no. 8, pp. 1104–1111.

    Article  CAS  Google Scholar 

  28. Major, I.T. and Constabel, C.P., Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores, Plant Physiol., 2008, vol. 146, no. 3, pp. 888–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oliva, M.L.V., Silva, M.C.C., Sallai, R.C., Brito, V.M., et al., A novel subclassification for Kunitz proteinase inhibitor from leguminous seeds, Biochimie, 2010, vol. 92, no. 11, pp. 1667–1673.

    Article  CAS  PubMed  Google Scholar 

  30. Doares, S.H., Narvaez-Vasquez, J., Conconi, A. and Ryan, CA., Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid, Plant Physiol., 1995, vol. 108, no. 4, pp. 1741–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rakwal, R., Agrawal, G.K., and Jwa, N.S., Characterization of a rice (Oryza sativa L.) Bowman—Birk proteinase inhibitor: tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors, Gene, 2001, vol. 263, nos. 1‒2, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  32. Graham, M.Y., Weidner, J., Wheeler, K., Pelow, M.J., et al., Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor, Physiol. Mol. Plant Pathol., 2003, vol. 63, no. 3, pp. 141–149.

    Article  CAS  Google Scholar 

  33. Leon, J., Rojo, E., and Sanchez-Serrano, J.J., Wound signaling in plants, J. Exp. Bot., 2001, vol. 52, no. 354, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Dammann, C., Rojo, E., Jose, J., and Serrano, S., Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways, Plant J., 1997, vol. 11, no. 4, pp. 773–782.

    Article  CAS  PubMed  Google Scholar 

  35. Shitan, N., Horiuchi, KI., Sato, F., and Yazaki, K., Bowmin—Birk proteinase inhibitor confers heavy metal and multiple drug tolerance in yeast, Plant Cell Physiol., 2007, vol. 48, no. 1, pp. 193–197.

    Article  CAS  PubMed  Google Scholar 

  36. Yruela, I., Pueyo., J.J., Alonsos, P.J., and Picorel, R., Photoinhibitiona of photosystem II from higher plants effect of copper inhibition, J. Biol. Chem.,1996, vol. 271, no. 44, pp. 27408–27415.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, R. and Ryan, C.A., Wound-inducible potato inhibitor II genes: enhancement of expression by sucrose, Plant. Mol. Biol., 1990, vol. 14, no. 4, pp. 527–536.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, Y.J., Jeon, J.N., Jang, M.G., Oh, J.Y., et al., Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer, J. Ginseng Res., 2014, vol. 38, no. 1, pp. 66–72.

    Article  CAS  PubMed  Google Scholar 

  39. Purev, M., Kim, Y.J., Kim, M.K., Pulla, R.K. and Yang, D.C., Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses, Plant Physiol. Biochem., 2010, vol. 48, no. 6, pp. 451–460.

    Article  CAS  PubMed  Google Scholar 

  40. Liu, J., Wang, Q., Sun, M., Zhu, L., Yang, M. and Zhao, Y., Selection of reference genes for quantitative real-time PCR normalization in Panax ginseng at different stages of growth and in different organs, PLoS One, 2014, vol. 9, no. 11, e112177

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Kim.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myagmarjav, D., Sukweenadhi, J., Kim, Y.J. et al. Molecular characterization and expression analysis of pathogenesis related protein 6 from Panax ginseng. Russ J Genet 53, 1211–1220 (2017). https://doi.org/10.1134/S1022795417110060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417110060

Keywords

Navigation