Skip to main content
Log in

Genetic markers of adaptive processes in the Far Eastern pink salmon Oncorhynchus gorbuscha: Allelic diversity at the locus of major histocompatibility complex MHC I-A1

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

To clarify allelic diversity at the locus of major histocompatibility complex MHC class I-A1 in the Far Eastern pink salmon Oncorhynchus gorbuscha, sequencing of the electrophoretic alleles isolated from the gel (DGGE alleles) was performed. In 47 individuals, the genotypes of which consisted of ten DGGE alleles, 18 MHC I-A1 nucleotide sequences were revealed, and thus, eight cryptic alleles not detected by electrophoresis were identified. Eleven of these alleles were identified earlier in pink salmon from Hokkaido, Alaska, and British Columbia, and seven, possibly, were unique to the populations from some Far Eastern regions. Six of the previously determined DGGE alleles corresponded to more than one nucleotide sequence. However, the sequences attributed to the same DGGE allele differed on average by less than 1 nucleotide. These findings point to sufficient sensitivity of the DGGE method, although the genetic diversity and differentiation estimates obtained with it will obviously be somewhat underestimated. Considerable predominance of nonsynonymous substitutions over the synonymous ones in the codons of the MHC I-A1 antigen-binding site confirms the presence of positive selection aimed at providing the population resistance to local spectrum of pathogens. Refinement of the allelic composition of the adaptively important MHC genetic marker will contribute to more complete understanding of the adaptive genetic structure of pink salmon as an important element of the overall population structure of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heard, W.R., Life history of pink salmon (Oncorhynchus gorbuscha), in Pacific Salmon Life Histories, Groot, C. and Margolis, L., Eds., Vancouver: Univ. Brit. Colum. Press, 1991, pp. 119–230.

    Google Scholar 

  2. Altukhov, Yu.P., Salmenkova, E.A., and Omelchenko, V.T., Populyatsionnaya genetika lososevykh ryb (Population Genetics of Salmonid Fishes), Moscow: Nauka, 1997.

    Google Scholar 

  3. Gordeeva, N.V. and Salmenkova, E.A., Experimental microevolution: transplantation of pink salmon into the European north, Evol. Ecol., 2011, vol. 25, pp. 657–679.

    Article  Google Scholar 

  4. Quinn, T.P., The Behavior and Ecology of Pacific Salmon and Trout, Bethesda: Am. Fish. Soc., 2005.

    Google Scholar 

  5. Glubokovskii, M.K. and Zhivotovskii, L.A., Population structure of the pink salmon: a system of fluctuating herds, Biol. Mor., 1986, no. 2, pp. 39–44.

    Google Scholar 

  6. Hendry, A.P., Castric, V., Kinnison, M.T., and Quinn, T.P., The evolution of philopatry and dispersal: homing versus straying in salmonids, in Evolution Illuminated: Salmon and Their Relatives, Hendry, A.P. and Stearns, S.C., Eds., New York: Oxford Univ. Press, 2004, pp. 52–91.

    Google Scholar 

  7. Keefer, M.L. and Caudill, C.C., Homing and straying by anadromous salmonids: a review of mechanisms and rates, Rev. Fish Biol. Fish., 2014, vol. 24, pp. 333–368.

    Article  Google Scholar 

  8. Salmenkova, E.A., Mechanisms of salmon’s homing, Usp. Sovrem. Biol., 2016, vol. 136, no. 6, pp. 593–607.

    Google Scholar 

  9. Gordeeva, N.V., High estimates of differentiation between pink salmon, Oncorhynchus gorbuscha, populations at locus of major histocompatibility complex MHC-I-A1 support the “local stock” hypothesis, J. Ichthyol., 2012, vol. 52, no. 1, pp. 68–76. https://doi.org/10.1134/S0032945212010043.

    Article  Google Scholar 

  10. Gordeeva, N.V., Estimates of population differentiation in pink salmon Oncorhynchus gorbuscha with using of the microsatellite markers may be underestimated due to high population sizes, J. Ichthyol., 2014, vol. 54, no. 5, pp. 347–358. https://doi.org/10.1134/S0032945214030059.

    Article  Google Scholar 

  11. Taylor, E.B., A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon, Aquaculture, 1991, vol. 98, pp. 185–207.

    Article  Google Scholar 

  12. Landry, C. and Bernatchez, L., Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar), Mol. Ecol., 2001, vol. 10, pp. 2525–2539.

    Article  CAS  PubMed  Google Scholar 

  13. Salmenkova, N.V., Gordeeva, N.V., Omelchenko, V.T., et al., Genetic differentiation of pink salmon Oncorhynchus gorbuscha Walbaum in the Asian part of the range, Russ. J. Genet., 2006, vol. 42, no. 10, pp. 1148–1163.

    Article  CAS  Google Scholar 

  14. Sommer, S., The importance of immune gene variability (MHC) in evolutionary ecology and conservation, Front. Zool., 2005, vol. 2, pp. 16–34.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hughes, A.L. and Yeager, M., Natural selection at major histocompatibility complex loci of vertebrates, Annu. Rev. Genet., 1998, vol. 32, pp. 415–425.

    Article  CAS  PubMed  Google Scholar 

  16. Grimholt, U., Larsen, S., Nordmo, R., et al., MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci, Immunogenetics, 2003, vol. 55, pp. 210–219.

    Article  CAS  PubMed  Google Scholar 

  17. Nei, M. and Hughes, A.L., Polymorphism and evolution of the major histocompatibility complex loci in mammals, in Evolution at the Molecular Level, Selander, R., Clark, A., and Whittams, T., Eds., Sunderland, MA: Sinauer, 1991, pp. 222–247.

    Google Scholar 

  18. Hedrick, P.W., Pathogen resistance and genetic variation at MHC loci, Evolution, 2002, vol. 56, pp. 1902–1908.

    Article  PubMed  Google Scholar 

  19. Dionne, M., Miller, K.M., Dodson, J.J., et al., Clinal variation in MHC diversity with temperature: evidence for the role of host—pathogen interaction on local adaptation in Atlantic salmon, Evolution, 2007, vol. 61, pp. 2154–2164.

    Article  CAS  PubMed  Google Scholar 

  20. Wegner, K.M., Historical and contemporary selection of teleost MHC genes: did we leave the past behind?, J. Fish. Biol., 2008, vol. 73, pp. 2110–2132.

    Article  Google Scholar 

  21. Dionne, M., Miller, K.M., Dodson, J.J., and Bernatchez, L., MHC standing genetic variation and pathogen resistance in wild Atlantic salmon, Philos. Trans. R. Soc., B, 2009, vol. 364, pp. 1555–1565.

    Article  CAS  Google Scholar 

  22. Landry, C., Garant, D., Duchesne, P., and Bernatchez, L., “Good genes as heterozygosity”: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar), Philos. Trans. R. Soc., B, 2001, vol. 268, pp. 1279–1285.

    CAS  Google Scholar 

  23. Larson, W.A., Seeb, J.E., Dann, T.H., et al., Signal of heterogeneous selection at an MHC locus in geographically proximate ecotypes of sockeye salmon, Mol. Ecol., 2014, vol. 23, pp. 5448–5461.

    Article  CAS  PubMed  Google Scholar 

  24. Larson, W.A., Lisi, P.J., Seeb, J.E., et al., MHC diversity is positively associated with stream water temperatures in proximate populations of sockeye salmon, J. Evol. Biol., 2016, vol. 29, no. 9, pp. 1846–1859.

    Article  CAS  PubMed  Google Scholar 

  25. Miller, K.M., Kaukinen, K.H., Beacham, T.D., and Withler, R.E., Geographic heterogeneity in natural selection on an MHC locus in sockeye salmon, Genetica, 2001, vol. 111, pp. 237–257.

    Article  CAS  PubMed  Google Scholar 

  26. Miller, K.M., Withler, R.E., and Beacham, T.D., Molecular evolution at MHC genes in two populations of Chinook salmon Oncorhynchus tshawytscha, Mol. Ecol., 1997, vol. 6, pp. 937–954.

    Article  CAS  PubMed  Google Scholar 

  27. Kearse, M., Moir, R., Wilson, A., et al., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 2012, vol. 28, no. 12, pp. 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Katagiri, T., Hirono, I., Aoki, T., and Sakai, M., Isolation of major histocompatibility complex class I cDNA from pink salmon (Oncorhynchus gorbuscha), Dev. Comp. Immunol., 1996, vol. 20, pp. 217–228.

    Article  CAS  PubMed  Google Scholar 

  29. Nei, M. and Gojobori, T., Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol. Biol. Evol., 1986, vol. 3, pp. 418–426.

    CAS  PubMed  Google Scholar 

  30. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Mol. Biol.Evol., 2013,vol.30, pp. 2725–2729.

    Google Scholar 

  31. Wilson, D.J. and McVean, G., Estimating diversifying selection and functional constraint in the presence of recombination, Genetics, 2006, vol. 172, pp. 1411–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Evans, M.L., Neff, B.D., and Heath, D.D., MHC genetic structure and divergence across populations of chinook salmon (Oncorhynchus tshawytscha), Heredity, 2010, vol. 104, pp. 449–459.

    Article  CAS  PubMed  Google Scholar 

  33. Keane, T.M., Creevey, C.J., Pentony, M.M., et al., Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified, BMC Evol. Biol., 2006, vol. 6, p. 29.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.

    CAS  PubMed  Google Scholar 

  35. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, pp. 783–791.

    Article  PubMed  Google Scholar 

  36. Koch, M., Camp, S., Collen, T., et al., Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding, Immunity, 2007, vol. 27, pp. 885–899.

    Article  CAS  PubMed  Google Scholar 

  37. Gharrett, A.J., Joyce, J., and Smoker, W.W., Fine-scale temporal adaptation within a salmonid population: mechanism and consequences, Mol. Ecol., 2013, vol. 22, pp. 4457–4469.

    Article  PubMed  Google Scholar 

  38. Tallman, R.F. and Healey, M.C., Homing, straying, and gene flow among seasonally separated populations of chum salmon (Oncorhynchus keta), Can. J. Fish. Aquat. Sci., 1994, vol. 51, pp. 577–588.

    Article  Google Scholar 

  39. Carrigan, D. and Hedrick, P.N., Class I MHC polymorphism and evolution in endangered California chinook and other Pacific salmon, Immunogenetics, 2001, vol. 53, pp. 483–489.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gordeeva.

Additional information

Original Russian Text © N.V. Gordeeva, E.A. Salmenkova, 2017, published in Genetika, 2017, Vol. 53, No. 11, pp. 1311–1319.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeeva, N.V., Salmenkova, E.A. Genetic markers of adaptive processes in the Far Eastern pink salmon Oncorhynchus gorbuscha: Allelic diversity at the locus of major histocompatibility complex MHC I-A1. Russ J Genet 53, 1234–1242 (2017). https://doi.org/10.1134/S1022795417110035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417110035

Keywords

Navigation