Skip to main content
Log in

A Method for Measuring the Heteroplasmy Level of Mitochondrial DNA Mutations

  • Methodology
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This paper presents a method for measuring the heteroplasmy level of mitochondrial DNA mutations, which is based on real-time PCR using TaqMan fluorescent probes. The method makes it possible to detect the heteroplasmy level of mtDNA mutations and has high accuracy and resolution. It shows significant differences between the parameters of heteroplasmy of patients belonging to different groups by the degree of disease. Application of this method, in particular, to determine the predisposition to atherosclerosis, makes it possible to determine whether the patient belongs to a low-, medium-, or high-risk group of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elson, J.L., Andrews, R.M., Chinnery, P.F., et al., Analysis of European mtDNA for recombination, Am. J. Hum. Genet., 2001, vol. 68, no. 1, pp. 145–153.

    Article  CAS  PubMed  Google Scholar 

  2. Wallace, D.C., Brown, M.D., and Lott, M.T., Mitochondrial DNA variation in human evolution and disease, Gene, 1999, vol. 238, pp. 211–230.

    Article  CAS  PubMed  Google Scholar 

  3. Sukernik, R.I., Derbeneva, O.A., Starikovskaya, E.B., et al., The mitochondrial genome and human mitochondrial diseases, Russ. J. Genet., 2002, vol. 38, no. 2, pp. 105–113.

    Article  CAS  Google Scholar 

  4. Ingman, M., Kaessmann, H., Paabo, S., and Gyllensten, U., Mitochondrial genome variation and the origin of modern humans, Nature, 2000, vol. 408, pp. 708–713. doi 10.1038/35047064

    Article  CAS  PubMed  Google Scholar 

  5. Lightowlers, R.N., Chinnery, P.F., Turnbull, D.M., and Howell, N., Mammalian mitochondrial genetics: heredity, heteroplasmy and disease, Trends. Genet., 1997, vol. 13, no. 11, pp. 450–455.

    Article  CAS  PubMed  Google Scholar 

  6. Robinson, B.H., Human Complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect, Biochem. Biophys. Acta, 1998, vol. 1364, no. 2, pp. 271–286.

    CAS  PubMed  Google Scholar 

  7. Temchenko, A.V., Nikiforov, N.G., Orekhova, V.A., et al., Advances in anti-atherosclerotic therapy, Patogenez, 2013, vol. 11, no. 3, pp. 13–21.

    Google Scholar 

  8. Larsson, N.G. and Clayton, D.F., Molecular genetic aspects of human mitochondrial disorders, Annu. Rev. Genet., 1995, vol. 29, pp. 151–178. doi 10.1146/annurev.ge.29.120195.001055

    Article  CAS  PubMed  Google Scholar 

  9. Sazonova, M.A., Budnikov, E.Yu., Khasanova, Z.B., et al., Studies of the human aortic intima by a direct quantitative assay of mutant alleles in the mitochondrial genome, Atherosclerosis, 2009, vol. 204, pp. 184–190.

    Article  CAS  PubMed  Google Scholar 

  10. Titov, V.N., Statin-induced inhibition of cholesterol synthesis in liver and very low density lipoproteins: statins, fatty acids and insulin resistance, Pathogenesis, 2013, vol. 11, no. 1, pp. 18–126.

    Google Scholar 

  11. Dalgatov, G.D., Saburina, I.N., Zurina, I.M., et al., Pathogenetic mechanisms of changes in activity of inflammation and fibrogenesis in patients with chronic diffuse liver disease after combined use of perfluorocarbon emulsions and multipotent mesenchymal stromal cells, Pathogenesis, 2013, vol. 11, no. 1, pp. 65–69.

    Google Scholar 

  12. Chernova, E.V., Sobenin, I.A., Melnichenko, A.A., et al., Serum atherogenicity as a pathogenetic target for direct anti-atherosclerotic therapy, Pathogenesis, 2013, vol. 11, no. 2, pp. 28–41.

    Google Scholar 

  13. Sazonova, M.A., Ivanova, M.M., Zhelankin, A.V., et al., Direct quantification of the mutant allele of the mitochondrial genome, Fundamental. Nauki Prakt., 2010, vol. 1, no. 2, pp. 19–21.

    Google Scholar 

  14. Mitrofanov, K.Yu. and Sazonova, M.A., Association of point mutations of nuclear and mitochondrial genomes of a person with coronary heart disease, Patol. Fiziol. Eksp. Ter., 2012, no. 2, pp. 51–56.

    Google Scholar 

  15. Sazonova, M.A., Sinev, V.V., Chicheva, M.M., et al., Association of heteroplasmic mutations of mitochondrial RNA genes with homogenates of atherosclerosisaffected aorta intima, Patol. Fiziol. Eksp. Ter., 2012, no. 4, pp. 67–70.

    Google Scholar 

  16. Ivanova, M.M., Borodachev, E.N., and Sazonova, M.A., Human diseases associated with mitochondrial genome mutations, Patol. Fiziol. Eksp. Ter., 2012, no. 3, pp. 115–122.

    Google Scholar 

  17. Bobryshev, Yu.V. and Orekhov, A.N., Dendritic cells in atherogenesis: identification and pathophysiological significance, Patogenez, 2013, vol. 11, no. 1, pp. 6–15.

    Google Scholar 

  18. Bukrinskii, M.I., Karagodin, V.P., Orekhova, V.A., et al., Dependence of cholesterol metabolism on Nef expression in HIV-infected cells, Patogenez, 2011, vol. 9, no. 1, pp. 34–37.

    Google Scholar 

  19. Sambrook, J. and Russell, D.W., Commonly used techniques in molecular cloning, in Molecular Cloning, New York: Cold Spring Harbor Laboratory Press, 2001, vol. 3, appendix 8, 3rd ed.

    Google Scholar 

  20. Savostina, E.P. and Arsent’eva, L.A., Methodical approaches in the forensic molecular genetic examinations, Probl. Ekspert. Med., 2011, vol. 11, no. 3, pp. 22–26.

    Google Scholar 

  21. Primer3 (v. 0.4.0). Pick primers from a DNA sequence. http://frodo.wi.mit.edu/.Accessed September 22, 2012.

  22. Oligo Calc: Oligonucleotide Properties Calculator. http://www.basic.northwestern.edu/biotools/Oligo-Calc.html. Accessed August 10, 2012.

  23. The UNAFold Web Server. http://mfold.rna.albany.edu/?q=dinamelt. Accessed October 5, 2012.

  24. Primer-BLAST. http://www.ncbi.nlm.nih.gov/tools/primer-blast/.Accessed September 22, 2012.

  25. BLAST (Basic Local Alignment Search Tool). http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn& BLAST_PROGRAMS=megaBlast&PAGE_TYPE= BlastSearch. Accessed September 22, 2012.

  26. Homo sapiens mitochondrion, complete genome. NCBI Reference Sequence: NC_012920.1. http://www.ncbi.nlm.nih.gov/nuccore/NC_012920. Accessed September 22, 2012.

  27. Lang, T.A. and Secic, M., How to Report Statistics in Medicine: Annotated Guidelines for Authors, Editors, and Reviewers, Philadelphia: American College of Physicians, 2006, 2nd ed.

    Google Scholar 

  28. Wang, L., Chen, Z.-J., Zhang, Y.-K., and Le, H.-B., The role of mitochondrial tRNA mutations in lung cancer, Int. J. Clin. Exp. Med., 2015, vol. 8, no. 8, pp. 13341–13346.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Krupnova, E.V., Shapetska, M.N., Mikhalenko, E.P., et al., Role of vascular endothelial growth factor in nonsmall cell lung cancer pathogenesis, Exp. Oncol., 2015, vol. 37, no. 3, pp. 213–217.

    CAS  PubMed  Google Scholar 

  30. Sun, Q., Arnold, R.S., Sun, C.Q., and Petros, J.A., A mitochondrial DNA mutation influences the apoptotic effect of statins on prostate cancer, Prostate, 2015, vol. 75, no. 16, pp. 1916–1925.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Sobenin.

Additional information

Original Russian Text © K.Y. Mitrofanov, V.P. Karagodin, Z.B. Khasanova, N.A. Orekhova, A.N. Orekhov, I.A. Sobenin, 2018, published in Genetika, 2018, Vol. 54, No. 1, pp. 122–130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrofanov, K.Y., Karagodin, V.P., Khasanova, Z.B. et al. A Method for Measuring the Heteroplasmy Level of Mitochondrial DNA Mutations. Russ J Genet 54, 121–128 (2018). https://doi.org/10.1134/S1022795417100064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417100064

Keywords

Navigation