Skip to main content
Log in

Epigenetic mechanisms and their role in plant development

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This paper considers molecular mechanisms of DNA methylation and histone modifications in plants. The role of these epigenetic processes in plant development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, C. and Morris, J.R., Genes, genetics, and epigenetics: a correspondence, Science, 2001, vol. 293, no. 5532, pp. 1103–1105. doi 10.1126/science.293.5532.1103

    Article  CAS  Google Scholar 

  2. Jablonka, E. and Lamb, M.J., The changing concept of epigenetics, Ann. N.Y. Acad. Sci., 2002, vol. 981, pp. 82–96. doi 10.1111/j.1749-6632.2002.tb04913.x

    Article  PubMed  Google Scholar 

  3. Korochkin, L.I., What is epigenetics?, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 958–965. doi 10.1134/S102279540609002X

    Article  CAS  Google Scholar 

  4. Chadov, B.F., A new stage in the development of genetics and term epigenetics, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 1053–1065. doi 10.1134/S1022795406090110

    Article  CAS  Google Scholar 

  5. Tikhodeev, O.N., Epigenetic and eugenetic processes, Biol. Bull. Rev., 2016, vol. 6, no. 4, pp. 333–343. doi 10.1134/S2079086416040071

    Article  Google Scholar 

  6. Waddington, C.H., The epigenotype, Endeavour, 1942, vol. 1, pp. 18–20.

    Google Scholar 

  7. Holliday, R., DNA methylation and epigenetic inheritance, Philos. Trans. R. Soc., B, 1990, vol. 326, no. 1235, pp. 329–338. doi 10.1098/rstb.1990.0015

    CAS  Google Scholar 

  8. Vanyushin, B.F., Epigenetics today and tomorrow, Russ. J. Genet.: Appl. Res., 2014, vol. 4, no. 3, pp. 805–831. doi 10.1134/S2079059714030083

    Google Scholar 

  9. Bird, A. and Macleod, D., Reading the DNA methylation signal, Cold Spring Harbor Symp. Quant. Biol., 2004, vol. 69, pp. 113–118. doi 10.1101/sqb. 2004.69.113

    Article  CAS  PubMed  Google Scholar 

  10. Berger, S.L., Kouzarides, T., Shiekhattar, R., and Shilatifard, A., An operational definition of epigenetics, Genes Dev., 2009, vol. 23, no. 7, pp. 781–783. doi 10.1101/gad.1787609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marinus, M.G. and Casadesus, J., Roles of DNA adenine methylation in host—pathogen interactions: mismatch repair, transcriptional regulation, and more, FEMS Microbiol. Rev., 2009, vol. 33, no. 3, pp. 488–503. doi 10.1111/j.1574-6976.2008.00159.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar, R. and Rao, D.N., Role of DNA methyltransferases in epigenetic regulation in bacteria, Subcell. Biochem., 2013, vol. 61, pp. 81–102. doi 10.1007/978-94-007-4525-4_4

    Article  CAS  PubMed  Google Scholar 

  13. Bestor, T.H., The DNA methyltransferases of mammals, Hum. Mol. Genet., 2000, vol. 9, no. 16, pp. 2395–2402. doi 10.1093/hmg/9.16.2395

    Article  CAS  PubMed  Google Scholar 

  14. Jeltsch, A., Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases, Chembiochem, 2002, vol. 3, no. 4, pp. 274–293.

    Article  CAS  PubMed  Google Scholar 

  15. Cokus, S.J., Feng, S., Zhang, X., et al., Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning, Nature, 2008, vol. 452, no. 7184, pp. 215–219. doi 10.1038/nature06745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, Z.D. and Meissner, A., DNA methylation: roles in mammalian development, Nat. Rev. Genet., 2013, vol. 14, no. 3, pp. 204–220. doi 10.1038/nrg3354

    Article  CAS  PubMed  Google Scholar 

  17. Raddatz, G., Guzzardo, P.M., Olova, N., et al., Dnmt2-dependent methylomes lack defined DNA methylation patterns, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 21, pp. 8627–8631. doi 10.1073/pnas.1306723110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goll, M.G., Kirpekar, F., Maggert, K.A., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 2006, vol. 311, no. 5759, pp. 395–398. doi 10.1126/science.1120976

    Article  CAS  PubMed  Google Scholar 

  19. Ashapkin, V.V., Kutueva, L.I., and Vanyushin, B.F., Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes, Russ. J. Genet., 2016, vol. 52, no. 3, pp. 237–248.

    Article  CAS  Google Scholar 

  20. Law, J.A. and Jacobsen, S.E., Molecular biology: dynamic DNA methylation, Science, 2009, vol. 323, no. 5921, pp. 1568–1569. doi 10.1126/science.1172782

    Article  CAS  PubMed  Google Scholar 

  21. Teixeira, F.K. and Colot, V., Repeat elements and the Arabidopsis DNA methylation landscape, Heredity (Edinburgh), 2010, vol. 105, no. 1, pp. 14–23. doi 10.1038/hdy.2010.52

    Article  CAS  Google Scholar 

  22. Ashapkin, V.V., Kutueva, L.I., and Vanyushin, B.F., Plant DNA methyltransferase genes: multiplicity, expression, methylation patterns, Biochemistry (Moscow), 2016, vol. 81, no. 2, pp. 141–151. doi 10.1134/S0006297916020085

    Article  CAS  Google Scholar 

  23. Finnegan, E.J., Peacock, W.J., and Dennis, E.S., Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 16, pp. 8449–8454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindroth, A.M., Cao, X., Jackson, J.P., et al., Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation, Science, 2001, vol. 292, no. 5524, pp. 2077–2080. doi 10.1126/science. 1059745

    Article  CAS  PubMed  Google Scholar 

  25. Cao, X. and Jacobsen, S.E., Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing, Curr. Biol., 2002, vol. 12, no. 13, pp. 1138–1144. doi 10.1126/science.1059745

    Article  CAS  PubMed  Google Scholar 

  26. Vongs, A., Kakutani, T., Martienssen, R.A., and Richards, E.J., Arabidopsis thaliana DNA methylation mutants, Science, 1993, vol. 260, no. 5116, pp. 1926–1928. doi 10.1126/science.8316832

    Article  CAS  PubMed  Google Scholar 

  27. Brzeski, J. and Jerzmanowski, A., Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors, J. Biol. Chem., 2003, vol. 278, no. 2, pp. 823–828. doi 10.1074/jbc. M209260200

    Article  CAS  PubMed  Google Scholar 

  28. Lippman, Z., Gendrel, A.V., Black, M., et al., Role of transposable elements in heterochromatin and epigenetic control, Nature, 2004, vol. 430, no. 6998, pp. 471–476. doi 10.1038/nature02651

    Article  CAS  PubMed  Google Scholar 

  29. Kakutani, T., Jeddeloh, J.A., Flowers, S.K., et al., Developmental abnormalities and epimutations associated with DNA hypomethylation mutations, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 22, pp. 12406–12411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zilberman, D., Gehring, M., Tran, R.K., et al., Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription, Nat. Genet., 2007, vol. 39, no. 1, pp. 61–69. doi 10.1038/ng1929

    Article  CAS  PubMed  Google Scholar 

  31. Berdasco, M., Alcá zar, R., Garcí a-Ortiz, M.V., et al., Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells, PLoS One, 2008, vol. 3, no. 10. e3306. doi 10.1371/journal.pone. 0003306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang, X., Yazaki, J., Sundaresan, A., et al., Genomewide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis, Cell, 2006, vol. 126, no. 6, pp. 1189–1201. doi 10.1016/j.cell. 2006.08.003

    Article  CAS  PubMed  Google Scholar 

  33. Borges, F. and Martienssen, R.A., The expanding world of small RNAs in plants, Nat. Rev. Mol. Cell Biol., 2015, vol. 16, no. 12, pp. 727–741. doi 10.1038/nrm4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan, S.W., Henderson, I.R., and Jacobsen, S.E., Gardening the genome: DNA methylation in Arabidopsis thaliana, Nat. Rev. Genet., 2005, vol. 6, no. 5, pp. 351–360. doi 10.1038/nrg1601

    Article  CAS  PubMed  Google Scholar 

  35. Pikaard, C.S., Haag, J.R., Ream, T., and Wierzbicki, A.T., Roles of RNA polymerase IV in gene silencing, Trends Plant Sci., 2008, vol. 13, no. 7, pp. 390–397. doi 10.1016/j.tplants.2008.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haag, J.R. and Pikaard, C.S., Multisubunit RNA polymerases IVand V: purveyors of non-coding RNA for plant gene silencing, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, no. 8, pp. 483–492. doi 10.1038/nrm3152

    Article  CAS  PubMed  Google Scholar 

  37. Herr, A.J., Jensen, M.B., Dalmay, T., and Baulcombe, D.C., RNA polymerase IV directs silencing of endogenous DNA, Science, 2005, vol. 308, no. 5718, pp. 118–120. doi 10.1126/science.1106910

    Article  CAS  PubMed  Google Scholar 

  38. Pikaard, C.S. and Mittelsten-Scheid, O., Epigenetic regulation in plants, Cold Spring Harbor Perspect. Biol., 2014, vol. 6, no. 12. a019315. doi 10.1101/cshperspect. a019315

    Article  CAS  Google Scholar 

  39. Zhang, H., He, X., and Zhu, J.K., RNA-directed DNA methylation in plants: where to start?, RNA Biol., 2013, vol. 10, no. 10, pp. 1593–1596. doi 10.4161/rna.26312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhong, X., Hale, C.J., Law, J.A., et al., DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons, Nat. Struct. Mol. Biol., 2012, vol. 19, no. 9, pp. 870–875. doi 10.1038/nsmb.2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wierzbicki, A.T., Cocklin, R., Mayampurath, A., et al., Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome, Genes Dev., 2012, vol. 26, pp. 1825–1836. doi 10.1101/gad.197772.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jullien, P., Mosquna, A., Ingouff, M., et al., Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis, PLoS Biol., 2008, vol. 6, no. 8. e194. doi 10.1371/journal.pbio.0060194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Choi, Y., Gehring, M., Johnson, L., et al., DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis, Cell, 2002, vol. 110, no. 1, pp. 33–42. doi 10.1016/S0092-8674(02)00807-3

    Article  CAS  PubMed  Google Scholar 

  44. Gehring, M., Huh, J., Hsieh, T., et al., DEMETER DNA glycosylase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation, Cell, 2006, vol. 124, no. 3, pp. 495–506. doi 10.1016/j.cell.2005.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huh, J., Bauer, M., Hsieh, T., and Fischer, R., Cellular programming of plant gene imprinting, Cell, 2008, vol. 132, no. 5, pp. 735–744. doi 10.1016/j.cell.2008.02.018

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, J., Kapoor, A., Sridhar, V., et al., The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis, Curr. Biol., 2007, vol. 17, no. 1, pp. 54–59. doi 10.1016/j.cub.2006. 10.059

    Article  CAS  PubMed  Google Scholar 

  47. Penterman, J., Zilberman, D., Huh, J., et al., DNA demethylation in the Arabidopsis genome, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 16, pp. 6752–6757. doi 10.1073/pnas.0701861104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ibarra, C., Feng, X., Schoft, V., et al., Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes, Science, 2012, vol. 337, no. 6100, pp. 1360–1364. doi 10.1126/science. 1224839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huettel, B., Kanno, T., Daxinger, L., et al., Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis, EMBO J., 2006, vol. 25, no. 12, pp. 2828–2836. doi 10.1038/sj.emboj.7601150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mathieu, O., Reinders, J., C aikovski, M., et al., Transgenerational stability of the Arabidopsis epigenome is coordinated by CGmethylation, Cell, 2007, vol. 130, no. 5, pp. 851–862. doi 10.1016/j.cell.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, J., Active DNA demethylation mediated by DNA glycosylases, Annu. Rev. Genet., 2009, vol. 43, pp. 143–166. doi 10.1146/annurev-genet-102108-134205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng, X., Pontes, O., Zhu, J., et al., ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis, Nature, 2008, vol. 455, no. 7217, pp. 1259–1262. doi 10.1038/nature07305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zilberman, D., Coleman-Derr, D., Ballinger, T., and Henikoff, S., Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks, Nature, 2008, vol. 456, no. 7218, pp. 125–129. doi 10.1038/ nature07324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pien, S., Fleury, D., Mylne, J.S., and Crevillen, P., ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation, Plant Cell, 2008, vol. 3, pp. 580–588. doi 10.1105/tpc.108.058172

    Article  CAS  Google Scholar 

  55. Tamada, Y., Yun, J.Y., Woo, S.C., and Amasino, R.M., ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C, Plant Cell, 2009, vol. 21, no. 10, pp. 3257–3269. doi 10.1105/tpc.109.070060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tolhuis, B., de Wit, E., Muijrers, I., Teunissen, H., et al., Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster, Nat. Genet., 2006, vol. 38, no. 6, pp. 694–699. doi 10.1038/ng1792

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, X., Clarenz, O., Cokus, S., and Bernatavichute, Y.V., Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis, PLoS Biol., 2007, vol. 5, no. 5. e129. doi 10.1371/journal. pbio.0050129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. He, C., Huang, H., and Xu, L., Mechanisms guiding Polycomb activities during gene silencing in Arabidopsis thaliana, Front Plant Sci., 2013, vol. 4, p. 454. doi 10.3389/fpls

    PubMed  PubMed Central  Google Scholar 

  59. Derkacheva, M. and Hennig, L., Variations on a time: Polycomb group protein in plants, J. Exp. Bot., 2014, vol. 65, no. 10, pp. 2769–2784. doi 10.1093/jxb/ert410

    Article  CAS  PubMed  Google Scholar 

  60. Exner, V., Aichinger, E., Shu, H., Wildhaber, T., et al., The chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 is essential for H3K27me3 binding and function during Arabidopsis development, PLoS One, 2009, vol. 4, no. 4. e5335. doi 10.1371/journal.pone.0005335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Xu, L. and Shen, W.H., Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis, Curr. Biol., 2008, vol. 18, no. 24, pp. 1966–1971. doi 10.1016/j.cub.2008.11.019

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, H., Ma, Z.Y., Zeng, L., et al., DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 20, pp. 8290–8265. doi 10.1073/pnas.1300585110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Law, J.A., Du, J., Hale, C.J., et al., Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1, Nature, 2013, vol. 498, no. 7454, pp. 385–389. doi 10.1038/nature12178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson, L.M., Bostick, M., Zhang, X., et al., The SRA methyl-cytosine-binding domain links DNA and histone methylation, Curr. Biol., 2007, vol. 17, no. 4, pp. 379–384. doi 10.1016/j.cub.2007.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Du, J., Johnson, L.M., Groth, M., et al., Mechanism of DNA methylation-directed histone methylation by KRYPTONITE, Mol. Cell, 2014, vol. 55, no. 3, pp. 495–504. doi 10.1016/j.molcel.2014.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kakutani, T., Munakata, K., Richards, E.J., and Hirochika, H., Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana, Genetics, 1999, vol. 151, no. 2, pp. 831–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Arteaga-Vazquez, M.A. and Chandler, V.L., Paramutation in maize: RNA-mediated trans-generational gene silencing, Curr. Opin. Genet. Dev., 2010, vol. 20, no. 2, pp. 156–163. doi 10.1016/j.gde.2010.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hollick, J.B., Paramutation and related phenomena in diverse species, Nat. Rev. Genet., 2016. doi 10.1038/nrg.2016.115

    Google Scholar 

  69. Brink, R.A., Paramutation at the R locus in maize, Cold Spring Harbor Symp. Quant. Biol., 1958, vol. 23, pp. 379–391.

    Article  CAS  PubMed  Google Scholar 

  70. Rassoulzadegan, M., Grandjean, V., Gounon, P., et al., RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse, Nature, 2006, vol. 441, pp. 469–474. doi 10.1038/nature04674

    Article  CAS  PubMed  Google Scholar 

  71. de Vanssay, A., Bougé, A.L., Boivin, A., et al., Paramutation in Drosophila linked to emergence of a piRNA-producing locus, Nature, 2012, vol. 490, no. 7418, pp. 112–117. doi 10.1038/nature11416

    Article  PubMed  CAS  Google Scholar 

  72. Shirayama, M., Seth, M., Lee, H.C., et al., piRNAs initiate an epigenetic memory of non-self RNA in the C. elegans germline, Cell, 2012, vol. 150, no. 1, pp. 65–77. doi 10.1016/j.cell.2012.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choi, J., Hyun, Y., Kang, M.-J., et al., Resetting and regulation of flowering locus C expression during Arabidopsis reproductive development, Plant J., 2009, vol. 57, no. 5, pp. 918–931. doi 10.1111/j.1365- 313X.2008.03776.x

    Article  CAS  PubMed  Google Scholar 

  74. Iwasaki, M., Chromatin resetting mechanisms preventing transgenerational inheritance of epigenetic states, Front. Plant Sci., 2015, vol. 6, p. 380. doi 10.3389/fpls.2015.00380

    Article  PubMed  PubMed Central  Google Scholar 

  75. Crevillén, P., Yang, H., Cui, X., et al., Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state, Nature, 2014, vol. 515, no. 7528, pp. 587–590. doi 10.1038/nature13722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kwiatkowska, D., Flowering and apical meristem growth dynamics, J. Exp. Bot., 2008, vol. 59, no. 2, pp. 187–201. doi 10.1093/jxb/erm290

    Article  CAS  PubMed  Google Scholar 

  77. Batygina, T.B., Embriologiya tsvetkovykh rastenii: terminologiya i kontseptsii (Embryology of Flowering Plants: Terminology and Concepts), vol. 1: Generativnye organy tsvetka (Generative Organs of Flower), St. Petersburg: Mir i Sem’ya, 1994, vol. 1.

  78. Yang, H., Lu, P., Wang, Y., and Ma, H., The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: the complexity and evolution of the meiotic process, Plant J., 2011, vol. 65, no. 4, pp. 503–516. doi 10.1111/j.1365-313X.2010. 04439.x

    Article  CAS  PubMed  Google Scholar 

  79. Kawashima, T. and Berger, F., Epigenetic reprogramming in plant sexual reproduction, Nat. Rev. Genet., 2014, vol. 15, no. 9, pp. 613–624. doi 10.1038/nrg3685

    Article  CAS  PubMed  Google Scholar 

  80. Calarco, J., Borges, F., Donoghue, M., et al., Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA, Cell, 2012, vol. 151, no. 1, pp. 194–205. doi 10.1016/j.cell.2012.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garcia-Aguilar, M., Michaud, C., Leblanc, O., and Grimanelli, D., Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis- like phenotypes, Plant Cell, 2010, vol. 22, no. 10, pp. 3249–3267. doi 10.1105/tpc.109.072181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jullien, P., Susaki, D., Yelagandula, R., et al., DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana, Curr. Biol., 2012, vol. 22, no. 19, pp. 1825–1830. doi 10.1016/j.cub.2012.07.061

    Article  CAS  PubMed  Google Scholar 

  83. Mosher, R., Melnyk, C., Kelly, K., et al., Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis, Nature, 2009, vol. 460, no. 7252, pp. 283–286. doi 10.1038/nature08084

    Article  CAS  PubMed  Google Scholar 

  84. Slotkin, R., Vaughn, M., Borges, F., et al., Epigenetic reprogramming and small RNA silencing of transposable elements in pollen, Cell, 2009, vol. 136, no. 3, pp. 461–472. doi 10.1016/j.cell.2008.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nuthikattu, S., McCue, A., Panda, K., et al., The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs, Plant Physiol., 2013, vol. 162, no. 1, pp. 116–131. doi 10.1104/pp.113.216481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grant-Downton, R., Kourmpetli, S., Hafidh, S., et al., Artificial microRNAs reveal cell-specific differences in small RNA activity in pollen, Curr. Biol., 2013, vol. 23, no. 14, pp. 599–601. doi 10.1016/ j.cub.2013.05.055

    Article  CAS  Google Scholar 

  87. Schoft, V., Chumak, N., Mosiolek, M., et al., Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin, EMBO Rep., 2009, vol. 10, no. 9, pp. 1015–1021. doi 10.1038/embor.2009.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Feng, S., Jacobsen, S., and Reik, W., Epigenetic reprogramming in plant and animal development, Science, 2010, vol. 330, no. 6004, pp. 622–627. doi 10.1126/science.1190614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Saze, H., Mittelsten-Scheid, O., and Paszkowski, J., Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis, Nat. Genet., 2003, vol. 34, no. 1, pp. 65–69. doi 10.1038/ng1138

    Article  CAS  PubMed  Google Scholar 

  90. Schoft, V., Chumak, N., Choi, Y., et al., Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 19, pp. 8042–8047. doi 10.1073/pnas.1105117108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gong, Z., Morales-Ruiz, T., Ariza, R., et al., ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase, Cell, 2002, vol. 111, no. 6, pp. 803–814. doi 10.1016/S0092- 8674(02)01133-9

    Article  CAS  PubMed  Google Scholar 

  92. Becker, C., Hagmann, J., Muller, J., et al., Spontaneous epigenetic variation in the Arabidopsis thaliana methylome, Nature, 2011, vol. 480, no. 7376, pp. 245–249. doi 10.1038/nature10555

    Article  CAS  PubMed  Google Scholar 

  93. Kubo, T., Fujita, M., Takahashi, H., et al., Transcriptome analysis of developing ovules in rice isolated by laser microdissection, Plant Cell Physiol., 2013, vol. 54, no. 5, pp. 750–765. doi 10.1093/pcp/pct029

    Article  CAS  PubMed  Google Scholar 

  94. Singh, M., Goel, S., Meeley, R., et al., Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein, Plant Cell, 2011, vol. 23, no. 2, pp. 443–458. doi 10.1105/tpc.110.079020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Qi, Y., He, X., Wang, X., et al., Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNAdirected DNA methylation, Nature, 2006, vol. 443, no. 7114, pp. 1008–1012. doi 10.1038/nature05198

    Article  PubMed  Google Scholar 

  96. Olmedo-Monfil, V., Durán-Figueroa, N., Arteaga-Vázquez, M., et al., Control of female gamete formation by a small RNA pathway in Arabidopsis, Nature, 2010, vol. 464, no. 7288, pp. 628–632. doi 10.1038/ nature08828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ingouff, M., Rademacher, S., Holec, S., et al., Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis, Curr. Biol., 2010, vol. 20, no. 23, pp. 2137–2143. doi 10.1016/j.cub.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  98. Mayer, K.F., Schoof, H., Haecker, A., Lenhardt, M., et al., Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem, Cell, 1998, vol. 95, no. 6, pp. 805–815. doi 10.1104/pp.113.216481

    Article  CAS  PubMed  Google Scholar 

  99. Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., et al., A molecular link between stem cell regulation and floral patterning in Arabidopsis, Cell, 2001, vol. 105, no. 6, pp. 793–803. doi 10.1016/S0092- 8674(01)00384-1

    Article  CAS  PubMed  Google Scholar 

  100. Liu, X., Kim, Y.J., Müller, R., et al., AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb group proteins, Plant Cell, 2011, vol. 23, no. 10, pp. 3654–3670. doi 10.1105/tpc.111.091538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gordon, S.P., Heisler, M.G., Reddy, G.V., et al., Pattern formation during de novo assembly of the Arabidopsis shoot meristem, Development, 2007, vol. 134, no. 19, pp. 3539–3548. doi 10.1242/dev.010298

    Article  CAS  PubMed  Google Scholar 

  102. Li, W., Liu, H., Cheng, Z.J., et al., DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling, PLoS Genet., 2011, vol. 7. e1002243. doi 10.1371/journal. pgen.1002243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ezhova, T.A. and Vu, Kh.Ch., Genetic and epigenetic regulation of leaf morphogenesis, Vestn. Tver Gos. Univ., Ser. Biol. Ekol., 2008, no. 9, pp. 66–76.

    Google Scholar 

  104. Byrne, M.E., Barley, R., Curtis, M., et al., Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis, Nature, 2000, vol. 408, no. 6815, pp. 967–971. doi 10.1038/35050091

    Article  CAS  PubMed  Google Scholar 

  105. Semiarti, E., Ueno, Y., Tsukaya, H., et al., The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves, Development, 2001, vol. 128, no. 10, pp. 1771–1783.

    CAS  PubMed  Google Scholar 

  106. Lodha, M., Marco, C.F., and Timmermans, M.C., The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2, Genes Dev., 2013, vol. 27, no. 6, pp. 596–601. doi 10.1101 /gad.211425.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Baubec, T., Finke, A., Mittelsten-Scheid, O., and Pecinka, A., Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis, EMBO Rep., 2014, vol. 15, no. 4, pp. 446–452. doi 10.1002/embr.201337915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jiang, D., Gu, X., and He, Y., Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis, Plant Cell, 2009, vol. 21, no. 6, pp. 1733–1746. doi 10.1105/tpc.109.067967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Deal, R.B., Topp, C.N., McKinney, E.C., and Meagher, R.B., Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z, Plant Cell, 2007, vol. 19, no. 1, pp. 74–83. doi 10.1105/ tpc.106.048447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. He, Y., Doyle, M.R., and Amasino, R., MPAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalizationresponsive, winter-annual habit in Arabidopsis, Genes Dev., 2004, vol. 18, no. 22, pp. 2774–2784. doi 10.1101/gad.1244504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gu, X., Jiang, D., Wang, Y., et al., Repression of the floral transition via histone H2B monoubiquitination, Plant J., 2009, vol. 57, no. 3, pp. 522–533. doi 10.1111/j.1365-313X.2008.03709.x

    Article  CAS  PubMed  Google Scholar 

  112. Swiezewski, S., Liu, F., Magusin, A., and Dean, C., Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target, Nature, 2009, vol. 462, no. 7274, pp. 799–802. doi 10.1038/ nature08618

    Article  CAS  PubMed  Google Scholar 

  113. Heo, J.B. and Sung, S., Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA, Science, 2011, vol. 331, no. 6013, pp. 76–79. doi 10.1126/science.1197349

    Article  CAS  PubMed  Google Scholar 

  114. De Lucia, F., Crevillen, P., Jones, A.M., et al., A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 44, pp. 16831–16836. doi 10.1073/pnas.0808687105

    Article  PubMed  PubMed Central  Google Scholar 

  115. Li, W., Wang, Z., Li, J., et al., Overexpression of AtBMI1C, a polycomb group protein gene, accelerates flowering in Arabidopsis, PLoS One, 2011, vol. 6, no. 6. e21364. doi 10.1371/journal.pone.0021364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vining, K., Pomraning, K., Wilhelm, L., et al., Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa, BMC Plant Biol., 2013, vol. 13, p. 92. doi 10.1186/1471-2229-13- 92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Leljak-Levanic, D., Bauer, N., Mihaljevic, S., and Jelaska, S., Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L., Plant Cell Rep., 2004, vol. 23, no. 3, pp. 120–127. doi 10.1007/s00299-004-0819-6

    Article  CAS  PubMed  Google Scholar 

  118. Grafi, G., Ben-Meir, H., Avivi, Y., et al., Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation, Dev. Biol., 2007, vol. 306, no. 2, pp. 838–846. doi 10.1016/j.ydbio.2007.03.023

    Article  CAS  PubMed  Google Scholar 

  119. Nic-Can, G., López-Torres, A., Barredo-Pool, F., et al., New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora, PLoS One, 2013, vol. 8, no. 8. e72160. doi 10.1371/journal.pone.0072160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Us-Camas, R., Rivera-Solís, G., Duarte-Aké, F., and De-la-Peña, C., In vitro culture: an epigenetic challenge for plants, Plant Cell Tiss. Organ Cult., 2014, vol. 118, no. 2, pp. 187–201. doi 10.1007/s11240-014- 0482-8

    Article  CAS  Google Scholar 

  121. He, C., Chen, X., Huang, H., and Xu, L., Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues, PLoS Genet., 2012, vol. 8, no. 8. e1002911. doi 10.1371/journal. pgen.1002911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pischke, M., Huttlin, E., Hegeman, A., and Sussman, M., A transcriptome-based characterization of habituation in plant tissue culture, Plant Physiol., 2006, vol. 140, no. 4, pp. 1255–1278. doi 10.1104/pp.105.076059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ong-Abdullah, M., Ordway, J., Jiang, N., et al., Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm, Nature, 2015, vol. 525, no. 7570, pp. 533–537. doi 10.1038/ nature15365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hodar, J.A., Leaf fluctuating asymmetry of Holm oak in response to drought under contrasting climatic conditions, J. Arid Environ., 2002, vol. 52, no. 2, pp. 233–243. doi 10.1006/jare.2002.0989

    Article  Google Scholar 

  125. Trubyanov, A.B. and Glotov, N.V., Fluctuating asymmetry: trait variation and the left–right correlation, Dokl. Biol. Sci., 2010, vol. 431, nos. 1–6, pp. 103–105.

    Article  CAS  PubMed  Google Scholar 

  126. Tikhodeev, O.N., Fluctuational variation of the flower structure in Trientalis europaea L. (Primulaceae), Bot. Zh., 2012, vol. 97, no. 7, pp. 901–917.

    Google Scholar 

  127. De Craene, L.R., Meristic changes in flowering plants: how flowers play with numbers, Flora, 2016, vol. 221, pp. 22–37. doi 10.1016/ j.flora.2015.08.005

    Article  Google Scholar 

  128. Lutova, L.A., Bondarenko, L.V., Buzovkina, I.S., et al., The influence of plant genotype on regeneration process, Russ. J. Genet., 1994, vol. 30, no. 8, pp. 1065–1074.

    Google Scholar 

  129. Lutova, L.A., Buzovkina, I.S., Smirnova, O.A., et al., Genetic control of in vitro regeneration processes in radish, In Vitro Cell Dev. Biol. Plant., 1997, vol. 33, pp. 269–274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Lebedeva.

Additional information

Original Russian Text © M.A. Lebedeva, V.E. Tvorogova, O.N. Tikhodeyev, 2017, published in Genetika, 2017, Vol. 53, No. 10, pp. 1115–1131.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, M.A., Tvorogova, V.E. & Tikhodeyev, O.N. Epigenetic mechanisms and their role in plant development. Russ J Genet 53, 1057–1071 (2017). https://doi.org/10.1134/S1022795417090083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417090083

Keywords

Navigation