Skip to main content
Log in

Phylogeography and demographic history of Siberian rubythroat Luscinia calliope

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Phylogeographic analysis on the basis of individual marker variability provides insight into the history and mechanisms of the range formation of widely distributed species. A preliminary study of the mtDNA cytochrome b gene in Siberian rubythroat Luscinia calliope revealed the existence of three well-differentiated haplogroups, including one western and two eastern haplogroups. Continuing the study of the genetic markers of the species, we found that, in western part of the range, represented by the nominative geographic race, there were almost exclusively haplotypes of western group. In eastern populations of Khabarovsk krai, Chukotka, Kamchatka, and Sakhalin, haplotypes of all groups are mixed in different proportions. At the same time, the populations of Hokkaido and Iturup islands are exclusively represented by individuals with eastern haplotypes. Comparison of the identified nuclear copies of mitochondrial genes and construction of the phylogenetic network of haplotypes on the basis of cloned and initial sequences showed that two groups of eastern haplotypes (one of which geographically corresponded to L. c. anadyrensis and L. c. camtschatkensis and the second corresponded to L. c. sachalinensis) originated from nuclear pseudogenes of L. c. calliope through intergenomic recombination. In this regard, we propose a new hypothesis for the establishment of the modern range of this species, according to which the Siberian rubythroat dispersal from South Siberia occurred in two stages. At first, the species expanded its range to the northeast in the direction of the Kolyma and Koryak uplands. During the settling of these areas of northeastern Asia, a recombination between the mitochondrial and nuclear DNA took place, which led to the forming of a new haplotype, which was widespread in the emerging breeding populations. Birds with recombinant haplotypes populated the territories of Chukotka and Kamchatka, and then gradually occupied the Kuril Islands and, eventually, reached Hokkaido. At the next stage, Siberian rubythroat, probably, appeared in Sakhalin Island during spring migration, where some individuals stopped for breeding. Settling of the island was accompanied by similar intergenomic recombination and rapid fixation of a new recombinant haplotype with its subsequent spread across Sakhalin. The insular way of dispersal is completely repeated by modern migrants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Red’kin, Ya.A., Arkhipov, V.Yu., Volkov, S.V., Mosalov, A.A., and Koblik, E.A., Species or not species? Disputed taxonomic interpretations of Northern Eurasia birds, XIV Mezhdunarodnaya ornitologicheskaya konferentsiya Severnoi Evrazii (14th International Ornithological Conference of Northern Eurasia), vol. 2: Doklady (Reports), Almaty, 2015, pp. 104–138.

    Google Scholar 

  2. Stepanyan, L.S., Konspekt ornitologicheskoi fauny Rossii i sopredel’nykh territorii (Conspectus of the Ornithological Fauna of Russia and Adjacent Territories), Moscow: Akademkniga, 2003.

    Google Scholar 

  3. Check-List of Japanese Birds, Sanda: Ornithological Society of Japan, 2012, 7th ed.

  4. Dickinson, E.C. and Christidis, L., The Howard and Moore Complete Checklist of the Birds of the World: Passerines, vol. 2, Eastbourne: Aves Press,2014, 4th ed.

    Google Scholar 

  5. Gladkov, N.A., Family of thrushes, Turdidae, in Ptitsy Sovetskogo Soyuza (Birds of the Soviet Union), Moscow: Sovetskaya Nauka, 1954, pp. 405–321.

    Google Scholar 

  6. The Howard and Moore Complete Checklist of the Birds of the World, Dickinson, E.C., Ed., London: Christopher Helm, 2003, 3rd ed.

  7. Brazil, M., Field Guide to the Birds of East Asia, London: Christopher Helm, 2009.

  8. Handbook of the Birds of the World, Del Hoyo, J., Elliot, A., and Sargatal, J., Eds., Barcelona: Lynx Edicions, 1992, vol. 1.

  9. Red’kin, Ya.A., New data on the taxonomy of Sakhalin and Kuril birds, Ornitologicheskiye issledovaniya v Severnoy Yevrazii (Ornithological Studies in Northern Eurasia) (Proc. 12th Int. Ornithol. Conf. Northern Eurasia), Stavropol: Stavropol Gos. Univ., 2006, pp. 430–431.

    Google Scholar 

  10. Koblik, E.A., Red’kin, Ya.A., and Arkhipov, V.Yu., Spisok ptits Rossiiskoi Federatsii (The List of Birds of Russian Federation), Moscow: KMK, 2006.

    Google Scholar 

  11. Nechaev, V.A. and Gamova, T.V., Ptitsy Dal’nego Vostoka Rossii (annotirovannyi katalog) (Birds of the Russian Far East (Annotated Index)), Vladivostok: Dal’nauka, 2009.

    Google Scholar 

  12. Stresemann, E., Meise, W., and Schonwetter, M., Aves Beickianae: Beiträge zur Ornithologie von Nordwest-Kansu nach den Forschungen von Walter Beick in den Jahren 1926—1933, J. Ornithol., 1937, vol. 85, pp. 375–576.

    Article  Google Scholar 

  13. Nazarenko, A.A., Summer avifauna of the high mountain belt of the Southern Sikhote-Alin, Ekologiya i fauna ptits yuga Dal’nego Vostoka (Bird Ecology and Fauna of the South of the Far East), Vladivostok: Dal’nevost. Nauchn. Tsentr, Akad. Nauk SSSR, 1971, pp. 90–126.

    Google Scholar 

  14. Portenko, L.A., Fauna of the Anadyr kray: birds, part 1, Tr. Nauchno-Issled. Inst. Polyarn. Zemled. Zhivotnov. Promysl. Khoz., Ser. Promysl. Khoz., 1939, vol. 5, pp. 126–128.

    Google Scholar 

  15. Kishchinskii, A.A., Ptitsy Koryakskogo nagor’ya (Birds of the Koryak Highlands), Moscow: Nauka, 1980.

    Google Scholar 

  16. Lobkov, E.G., Gnezdyashchiesya ptitsy Kamchatki (Nesting Birds of Kamchatka), Vladivostok: Dal’nevost. Nauchn. Tsentr, Akad. Nauk SSSR, 1986.

    Google Scholar 

  17. Dolgushin, I.A., Ptitsy Kazakhstana (Birds of Kazakhstan), Alma-Ata: Akad. Nauk KazSSR, 1970, vol. 3, pp. 610–613.

    Google Scholar 

  18. Dorzhiev, Ts.Z., Probable history of the formation of the modern range and the ecology of Siberian rubythroat in Northern Asia, Sibirskaya ornitologiya (Siberian Ornithology), Ulan-Ude: Buryat. Gos. Univ., 2006, issue 4, pp. 68–94.

    Google Scholar 

  19. Shcherbakov, B.V., Siberian rubythroat Luscinia calliope in the Western Altai, Russ. Ornitol. Zh., 2009, vol. 18, express issue 503, pp. 1376–1379.

    Google Scholar 

  20. Cheng Tso-hsin, A Distributional List of Chinese Birds, Beijing, 2nd ed., 1976.

    Google Scholar 

  21. Rhim, Sh.-J., Hur, W.-H., Lee, Ch.-B., et al., Characteristics of vegetation structure in breeding area of Siberian rubythroat (Luscinia calliope) in Daecheongbong peak, Mt. Seoraksan national park, South Korea, J. For. Res., 2002, vol. 13, pp. 239–240.

    Google Scholar 

  22. Grechko, V.V., Molecular DNA markers in phylogeny and systematics, Russ. J. Genet., 2002, vol. 38, no. 8, pp. 851–868. doi 10.1023/A:1016890509443

    Article  CAS  Google Scholar 

  23. Abramson, N.I., Molecular markers, phylogeography and the search for a criterion for the species demarcation, Trudy Zoologicheskogo Instituta RAN (Proceedings of the Zoological Institute of the Russian Academy of Sciences), 2009, suppl. 1, pp. 185–198.

    Google Scholar 

  24. Zink, R.M. and Barrowclough, G.F., Mitochondrial DNA under siege in avian phylogeography, Mol. Ecol., 2008, vol. 17, pp. 2107–2121.

    Article  CAS  PubMed  Google Scholar 

  25. Spiridonova, L.N., Val’chuk, O.P., Belov, P.S., and Maslovsky, K.S., Intraspecific genetic differentiation of the Siberian Rubythroat (Luscinia calliope): data of sequencing the mtDNA cytochrome b gene, Russ. J. Genet., 2013, vol. 49, no. 6, pp. 638–644. doi 10.1134/S1022795413060136

    Article  CAS  Google Scholar 

  26. Spiridonova, L.N., Red’kin, Ya.A., Valchuk, O.P., and Kryukov, A.P., Nuclear mtDNA pseudogenes as a source of new variants of the mtDNA cytochrome b haplotypes: a case study of Siberian rubythroat Luscinia calliope (Muscicapidae, Aves), Russ. J. Genet., 2016, vol. 52, no. 9, pp. 952–962. doi 10.1134/S1022795416090131

    Article  CAS  Google Scholar 

  27. Bonfeld, J.K., Smith, K.F., and Staden, R., A New DNA Sequence Assembly Program, Nucleic Acids Res., 1995, vol. 23, pp. 4992–4999.

    Article  Google Scholar 

  28. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  30. Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  31. Kimura, M., A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, vol. 16, pp. 111–120.

    Article  CAS  PubMed  Google Scholar 

  32. Hasegawa, M., Kishino, H., and Yano, T., Dating the human—ape split by a molecular clock of mitochondrial DNA, J. Mol. Evol., 1985, vol. 22, pp. 160–174.

    Article  CAS  PubMed  Google Scholar 

  33. Rogers, A.R. and Harpending, H., Population growth makes waves in the distribution of pairwise genetic differences, Mol. Biol. Evol., 1992, vol. 9, pp. 552–569.

    CAS  PubMed  Google Scholar 

  34. Harpending, H., Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution, Hum. Biol., 1994, vol. 66, pp. 591–600.

    CAS  PubMed  Google Scholar 

  35. Fu, Y., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, pp. 915–925.

    CAS  PubMed  Google Scholar 

  36. Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 158, pp. 1147–1155.

    Google Scholar 

  37. Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47–50.

    CAS  Google Scholar 

  38. Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, no. 1, p. 9.

    Google Scholar 

  39. Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  40. Markovets, M. and Yosef, R., Phenology, duration and site fidelity of wintering bluethroat (Luscinia svecica) at Eilat, Israel, J. Arid Environ., 2005, vol. 61, pp. 93–100.

    Google Scholar 

  41. Haring, E., Gamauf, A., and Kryukov, A., Phylogeographic patterns in widespread corvid birds, Mol. Phylogenet. Evol., 2007, vol. 45, no. 3, pp. 840–862. doi 10.1016/j.ympev.2007.06.016

    Article  CAS  PubMed  Google Scholar 

  42. Zink, R.M., Drovetski, S.V., Questiau, S., et al., Recent evolutionary history of the bluethroat (Luscinia svecica) across Eurasia, Mol. Ecol., 2003, vol. 12, pp. 3069–3075.

    Article  PubMed  Google Scholar 

  43. Zink, R.M., Pavlova, A., Drovetski, S., and Rohwer, S., Mitochondrial phylogeographies of five widespread Eurasian bird species, J. Ornithol., 2008, vol. 149, pp. 399–413.

    Article  Google Scholar 

  44. Drovetski, S.V., Zink, R.M., Ericson, P.G.P., and Fadeev, I.V., A multilocus study of pine grosbeak phylogeography supports the pattern of greater intercontinental divergence in Holarctic boreal forest birds than in birds inhabiting other high-latitude habitats, J. Biogeogr., 2010, vol. 37, pp. 696–706.

    Article  Google Scholar 

  45. Kryukov, A., Iwasa, M.A., Kakizawa, R., Suzuki, A., Pinsker, W., and Haring, E., Synchronic east-west divergence in azure-winged magpies (Cyanopica cyana) and magpies (Pica pica), J. Zool. Syst. Evol. Res., 2004, vol. 42, pp. 342–351.

    Article  Google Scholar 

  46. Pavlova, A., Rohwer, S., Drovetski, S.V., and Zink, R.M., Different post-Pleistocene histories of Eurasian parids, J. Hered., 2006, vol. 97, pp. 389–402. http://dx.doi.org/. doi 10.1093/jhered/esl011

    Article  CAS  PubMed  Google Scholar 

  47. Glushchenko, Yu.N., Nechaev, V.A., and Red’kin, Ya.A., Ptitsy Primorskogo kraya: kratkii faunisticheskii obzor (Birds of the Primorsky Krai: A Brief Faunistic Review), Moscow: KMK, 2016.

    Google Scholar 

  48. Nazarenko, A.A., The history of the subalpine landscape avifauna of the mountains of Siberia and the Far East, Zool. Zh., 1979, vol. 58, pp. 1680–1691.

    Google Scholar 

  49. Vijay, N., Bossu, C.M., Poelstra, J.W., et al., Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex, Nat. Commun., 2016, vol. 7. http:/www.nature.com/naturecommunications. doi 10.1038/ncomms13195

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Spiridonova.

Additional information

Original Russian Text © L.N. Spiridonova, O.P. Valchuk, Ya.A. Red’kin, T. Saitoh, A.P. Kryukov, 2017, published in Genetika, 2017, Vol. 53, No. 8, pp. 933–951.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonova, L.N., Valchuk, O.P., Red’kin, Y.A. et al. Phylogeography and demographic history of Siberian rubythroat Luscinia calliope . Russ J Genet 53, 885–902 (2017). https://doi.org/10.1134/S1022795417080105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417080105

Keywords

Navigation