Skip to main content
Log in

Association of polymorphisms in NFE2L2 gene encoding transcription factor Nrf2 with multifactorial diseases

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Protein transcription factor Nrf2 is a master regulator of cytoprotection. Nrf2 launches the expression of more than 100 genes of antioxidant protection and xenobiotic detoxification under oxidative stress conditions. The effect of Nrf2 induction is being intensively investigated in various multifactorial diseases that are accompanied by oxidative stress and cell death. In order to properly find a disease, which can be managed using the Nrf2-targeting therapy, it is essential to demonstrate a link between allele polymorphisms of the NFE2L2 gene, which encodes the Nrf2 protein, and the changed risk for the development of a disease. Here we review the studies of Nrf2 polymorphism in respiratory diseases (asthma, pneumonia) and associated critical illnesses, cardiovascular diseases, sex-specific reproductive disorders, gastrointestinal diseases, diabetes, obesity, neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases, epilepsy, and retinopathy. The results of the studies strongly indicate that transcription factor Nrf2 is responsible for the pathogenesis of various multifactorial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakata, K., Tanaka, Y., Nakano, T., et al., Nuclear receptor mediated transcriptional regulation in phase I,II,and III xenobiotic metabolizing systems, Drug Metab. Pharmacokinet., 2006, vol. 21, pp. 437–457.

    Article  CAS  PubMed  Google Scholar 

  2. Xu, C., Li, C.Y., and Kong, A.N., Induction of phaseI,IIand III drug metabolism/transport by xenobiotics, Arch. Pharm. Res., 2005, vol. 28, pp. 249–268.

    Article  CAS  PubMed  Google Scholar 

  3. Lyakhovich, V.V., Vavilin, V.A., Zenkov, N.K., et al., Active defense under oxidative stress: the antioxidant responsive element, Biochemistry (Moscow), 2006, vol. 71, no. 9, pp. 962–974. doi 10.1134/S0006297906090033

    Article  CAS  Google Scholar 

  4. Turpaev, K.T., Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles, Biochemistry (Moscow), 2013, vol. 78, no. 2, pp. 111–126. doi 10.1134/S0006297913020016

    Article  CAS  Google Scholar 

  5. Menshchikova, E.B., Tkachev, V.O., and Zenkov, N.K., Redox-dependent signaling system Nrf2/ARE in inflammation, Mol. Biol. (Moscow), 2010, vol. 44, no. 3, pp. 343–357. doi 10.1134/S0026893310030015

    Article  CAS  Google Scholar 

  6. Hayes, J.D., McMahon, M., Chowdhry, S., et al., Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway, Antioxid. Redox Signal., 2010, vol. 13, no. 11, pp. 1713–1748.

    Article  CAS  PubMed  Google Scholar 

  7. Wakabayashi, N., Slocum, S.L., Skoko, J.J., et al., When NRF2 talks, who’s listening?, Antioxid. Redox Signal., 2010, vol. 13, no. 11, pp. 1649–1663.

    Article  CAS  PubMed  Google Scholar 

  8. Hybertson, B.M., Gao, B., Bose, S.K., et al., Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation, Mol. Aspects Med., 2011, vol. 32, nos. 4–6, pp. 234–246.

    Article  CAS  PubMed  Google Scholar 

  9. Hecker, L., Logsdon, N.J., Kurundkar, D., et al., Reversal of persistent fibrosis in aging by targeting Nox4–Nrf2 redox imbalance, Sci. Transl. Med., 2014, vol. 6, no. 231. doi 10.1126/scitranslmed.3008182

  10. Ma, Q., Battelli, L., and Hubbs, A.F., Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2, Am. J. Pathol., 2006, vol. 168, no. 6, pp. 1960–1974.

    CAS  PubMed  Google Scholar 

  11. Sakata, H., Niizuma, K., Yoshioka, H., et al., Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats, J. Neurosci., 2012, vol. 32, pp. 3462–3473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niture, S.K. and Jaiswal, A.K., Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis, J. Biol. Chem., 2012, vol. 287, pp. 9873–9886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Piantadosi, C.A., Withers, C.M., Bartz, R.R., et al., Heme oxygenase-1 couples activation of mitochondrial biogenesis to antiinflammatory cytokine expression, J. Biol. Chem., 2011, vol. 286, pp. 16374–16385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harada, N., Kanayama, M., Maruyama, A., et al., Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages, Arch. Biochem. Biophys., 2011, vol. 508, pp. 101–109.

    Article  CAS  PubMed  Google Scholar 

  15. Komatsu, M., Kurokawa, H., Waguri, S., et al., The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1, Nat. Cell. Biol., 2010, vol. 12, pp. 213–223.

    CAS  PubMed  Google Scholar 

  16. Bendavit, G., Aboulkassim, T., Hilmi, K., et al., Nrf2 transcription factor can directly regulate mTOR: linking cytoprotective gene expression to a major metabolic regulator that generates redox activity, J. Biol. Chem., 2016, vol. 291, no. 49, pp. 25476–25488.

    Article  CAS  PubMed  Google Scholar 

  17. Baird, L. and Dinkova-Kostova, A.T., The cytoprotective role of the Keap1-Nrf2 pathway, Arch. Toxicol., 2011, vol. 85, no. 4, pp. 241–272.

    Article  CAS  PubMed  Google Scholar 

  18. Hayes, J.D. and McMahon, M., NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer, Trends Biochem. Sci., 2009, vol. 34, no. 4, pp. 176–188.

    Article  CAS  PubMed  Google Scholar 

  19. Jain, A.K., Mahajan, S., and Jaiswal, A.K., Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of Nrf2: a novel mechanism in Nrf2 activation, J. Biol. Chem., 2008, vol. 283, no. 25, pp. 17712–17720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eggler, A.L., Gay, K.A., and Mesecar, A.D., Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2, Mol. Nutr. Food Res., 2008, no. 52, pp. 84–94.

    Google Scholar 

  21. Villeneuve, N.F., Lau, A., and Zhang, D.D., Regulation of the Nrf2–Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullinring ubiquitin ligases, Antioxid. Redox Signal., 2010, vol. 13, no. 11, pp. 1699–1712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tkachev, V.O., Menshchikova, E.B., and Zenkov, N.K., Mechanism of the Nrf2/Keap1/ARE signaling system, Biochemistry (Moscow), 2011, vol. 76, no. 4, pp. 407–422. doi 10.1134/S0006297911040031

    Article  CAS  Google Scholar 

  23. Holland, R. and Fishbein, J.C., Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1, Antioxid. Redox Signal., 2010, vol. 13, no. 11, pp. 1749–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taguchi, K., Motohashi, H., and Yamamoto, M., Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution, Genes Cells, 2011, vol. 16, no. 2, pp. 123–140.

    Article  CAS  PubMed  Google Scholar 

  25. Magesh, S., Chen, Y., and Hu, L., Small molecule modulators of Keap1–Nrf2–ARE pathway as potential preventive and therapeutic agents, Med. Res. Rev., 2012, vol. 32, no. 4, pp. 687–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Niture, S.K., Khatri, R., and Jaiswal, A.K., Regulation of Nrf2—an update, Free Radical Biol. Med., 2014, no. 66, pp. 36–44.

    Article  CAS  Google Scholar 

  27. Bryan, H.K., Olayanju, A., Goldring, C.E., and Park, B.K., The Nrf2 cell defense pathway: Keap1-dependent and -independent mechanisms of regulation, Biochem. Pharmacol., 2013, vol. 85, no. 6, pp. 705–717. doi 10.1016/j.bcp.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  28. Dinkova-Kostova, A.T., Fahey, J.W., and Talalay, P., Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1), Methods Enzymol., 2004, vol. 382, pp. 423–448.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao, H. and Parkin, K.L., Induction of phase II enzyme activity by various selenium compounds, Nutr. Cancer, 2006, vol. 55, no. 2, pp. 210–223.

    Article  CAS  PubMed  Google Scholar 

  30. Turan, B., Tuncay, E., and Vassort, G., Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies, J. Bioenerg. Biomembr., 2012, vol. 44, no. 2, pp. 281–296.

    Article  CAS  PubMed  Google Scholar 

  31. Hur, W. and Gray, N.S., Small molecule modulators of antioxidant response pathway, Curr. Opin. Chem. Biol., 2011, vol. 15, no. 1, pp. 162–173.

    Article  CAS  PubMed  Google Scholar 

  32. Slocum, S.L. and Kensler, T.W., Nrf2: control of sensitivity to carcinogens, Arch. Toxicol., 2011, vol. 85, no. 4, pp. 273–284.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Z., Ma, C., Meng, C.J., et al., Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model, J. Pineal. Res., 2012, vol. 53, pp. 129–137.

    Article  CAS  PubMed  Google Scholar 

  34. Cummings, C., Melatonin for the management of sleep disorders in children and adolescents, Paediatr. Child. Health, 2012, vol. 17, pp. 331–336.

    PubMed  PubMed Central  Google Scholar 

  35. Correa, F., Mallard, C., Nilßson, M. and Sandberg, M., Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defense in astrocytes: restoring effects of inhibitors of HDACs, p38 MAPK and GSK3ß, Neurobiol. Dis., 2011, vol. 44, no. 1, pp. 142–151. doi 10.1016/j.nbd.2011.06.016

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, B., Zhu, X., Kim, Y., et al., Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage, Free Radical Biol. Med., 2012, vol. 52, no. 5, pp. 928–936. doi 10.1016/j.freeradbiomed.2011.12.006

    Article  CAS  Google Scholar 

  37. Wang, J.S., Ho, F.M., Kang, H.C., et al., Celecoxib induces heme oxygenase-1 expression in macrophages and vascular smooth muscle cells via ROS-dependent signaling pathway, Naunyn Schmiedebergs Arch. Pharmacol., 2011, vol. 383, pp. 159–168.

    Article  CAS  PubMed  Google Scholar 

  38. Baum, L., Lam, C.W., Cheung, S.K., et al., Sixmonth randomized, placebo-controlled, doubleblind, pilot clinical trial of curcumin in patients with Alzheimer disease, J. Clin. Psychopharmacol., 2008, vol. 28, pp. 110–113.

    Google Scholar 

  39. Ringman, J.M., Frautschy, S.A., Teng, E., et al., Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebocontrolled study, Alzheimers Res. Ther., 2012, vol. 4, p. 43.

    Article  CAS  Google Scholar 

  40. Turner, R.S., Thomas, R.G., Craft, S., et al., A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease, Neurology, 2015, vol. 85, pp. 1383–1391.

    CAS  PubMed  Google Scholar 

  41. Keum, Y.S., Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications, Ann. N.Y. Acad. Sci., 2011, vol. 184, no. 9. doi 10.1111/j.1749-6632.2011.06092.x

  42. Shiina, A., Kanahara, N., Sasaki, T., et al., An open study of sulforaphane-rich Broccoli sprout extract in patients with schizophrenia, Clin. Psychopharmacol. Neurosci., 2015, vol. 13, no. 1, pp. 62–67. doi 10.9758/cpn.2015.13.1.62

    Article  PubMed  PubMed Central  Google Scholar 

  43. Singh, K., Connors, S.L., Macklin, E.A., et al., Sulforaphane treatment of autism spectrum disorder (ASD), Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 43, pp. 15550–15555. doi 10.1073/pnas.1416940111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yates, M.S., Tauchi, M., Katsuoka, F., et al., Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes, Mol. Cancer Ther., 2007, vol. 6, pp. 154–162.

    Article  CAS  PubMed  Google Scholar 

  45. Kaidery, N.A., Banerjee, R., Yang, L., et al., Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson’s disease, Antioxid. Redox Signal., 2013, vol. 18, pp. 139–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pergola, P.E., Raskin, P., Toto, R.D., et al., Bardoxolone methyl and kidney function in CKD with type 2 diabetes, N. Engl. J. Med., 2011, vol. 365, pp. 327–336.

    Article  CAS  PubMed  Google Scholar 

  47. de Zeeuw, D., Akizawa, T., Audhya, P., et al., Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease, N. Engl. J. Med., 2013, vol. 369, pp. 2492–2503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang, D.D., Bardoxolone brings Nrf2-based therapies to light, Antioxid. Redox Signal., 2013, vol. 19, pp. 517–518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Velmurugan, K., Alam, J., McCord, J.M., and Pugazhenthi, S., Synergistic induction of heme oxygenase-1 by the components of the antioxidant supplement Protandim, Free Radical Biol. Med., 2009, vol. 46, pp. 430–440.

    Article  CAS  Google Scholar 

  50. Robbins, D., Gu, X., Shi, R., et al., The chemopreventive effects of Protandim: modulation of p53 mitochondrial translocation and apoptosis during skin carcinogenesis, PLoS One, 2010, vol. 5, no. 7. e11902. doi 10.1371/journal.pone.0011902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Qureshi, M.M., McClure, W.C., Arevalo, N.L., et al., The dietary supplement protandim decreases plasma osteopontin and improves markers of oxidative stress in muscular dystrophy mdx mice, J. Diet., 2010, vol. 7, no. 2, pp. 159–178.

    Article  Google Scholar 

  52. Lu, J., Gu, X., Robbins, D., et al., Protandim, a fundamentally new antioxidant approach in chemoprevention using mouse two-stage skin carcinogenesis as a model, PLoS One, 2009, vol. 4, no. 4. e5284. doi 10.1371/journal.pone.0005284

    Google Scholar 

  53. Scannevin, R.H., Chollate, S., Jung, M.Y., et al., Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway, J. Pharmacol. Exp. Ther., 2012, vol. 341, pp. 274–284.

    Article  CAS  PubMed  Google Scholar 

  54. Kappos, L., Gold, R., Miller, D.H., et al., Efficacy and safety of oral fumarate in patients with relapsing remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study, Lancet, 2008, vol. 372, pp. 1463–1472.

    CAS  PubMed  Google Scholar 

  55. Gold, R., Kappos, L., Arnold, D.L., et al., Placebocontrolled phase 3 study of oral BG-12 for relapsing multiple sclerosis, N. Engl. J. Med., 2012, vol. 367, pp. 1098–1107.

    Article  CAS  PubMed  Google Scholar 

  56. Papadopoulou, A., D’Souza, M., Kappos, L., and Yaldizli, O., Dimethyl fumarate for multiple sclerosis, Expert Opin. Invest. Drugs, 2010, vol. 19, pp. 1603–1612.

    Article  CAS  Google Scholar 

  57. Kappos, L., Gold, R., Miller, D.H., et al., Efficacy and safety of oral fumarate in patients with relapsingremitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study, Lancet, 2008, vol. 372, pp. 1463–1472.

    CAS  PubMed  Google Scholar 

  58. Fox, E.J. and Rhoades, R.W., New treatments and treatment goals for patients with relapsing-remitting multiple sclerosis, Curr. Opin. Neurol., 2012, vol. 25, pp. S11–S19.

    Article  CAS  PubMed  Google Scholar 

  59. Zenkov, N.K., Menshchikova, E.B., and Tkachev, V.O., Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target, Biochemistry (Moscow), 2013, vol. 78, no. 1, pp. 19–36. doi 10.1134/S0006297913010033

    Article  CAS  Google Scholar 

  60. Aggarwal, B.B., Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals, Annu. Rev. Nutr., 2010, vol. 30, pp. 173–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou, H., Beevers, C.S., and Huang, S., The targets of curcumin, Curr. Drug Targets, 2011, vol. 12, pp. 332–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grynkiewicz, G. and Slifirski, P., Curcumin and curcuminoids in quest for medicinal status, Acta Biochim. Pol., 2012, vol. 59, no. 2, pp. 201–212.

    CAS  PubMed  Google Scholar 

  63. Cuomo, J., Appendino, G., Dern, A.S., et al., Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation, J. Nat. Prod., 2011, vol. 74, pp. 664–669.

    Article  CAS  PubMed  Google Scholar 

  64. Belcaro, G., Cesarone, M.R., Dugall, M., et al., Efficacy and safety of Meriva®, a curcumin-phosphatidylcholine complex, during extended administration in osteoarthritis patients, Altern. Med. Rev., 2010, vol. 15, pp. 337–344.

    PubMed  Google Scholar 

  65. Appendino, G., Belcaro, G., Cornelli, U., et al., Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy: a pilot study, Panminerva Med., 2011, vol. 53, pp. 43–49.

    CAS  PubMed  Google Scholar 

  66. Haskó, G. and Pacher, P., Endothelial Nrf2 activation: a new target for resveratrol?, Am. J. Physiol. Heart Circ. Physiol., 2010, vol. 299, pp. H10–H12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ren, J., Fan, C., Chen, N., et al., Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats, Neurochem. Res., 2011, vol. 36, pp. 2352–2362.

    Article  CAS  PubMed  Google Scholar 

  68. Chiou, Y.S., Tsai, M.L., Nagabhushanam, K., et al., Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway, J. Agric. Food Chem., 2011, vol. 59, pp. 2725–2733.

    Article  CAS  PubMed  Google Scholar 

  69. Ogai, Yu.A. and Slast’ya, E.A., Anthocyanins in the composition of grapes polyphenols in food concentrate “Enoant,” Magarach: Vinograd. Vinodel., 2003, no. 1, pp. 25–26.

  70. Cho, H.Y., Genomic structure and variation of nuclear factor (erythroid-derived 2)-like 2, Oxid. Med. Cell. Longevity, 2013, vol. 2013, p. 286524. doi 10.1155/2013/286524

    Google Scholar 

  71. Shintani, Y., Drexler, H.C., Kioka, H., et al., Toll-like receptor 9 protects non-immune cells from stress by modulating mitochondrial ATP synthesis through the inhibition of SERCA2, EMBO Rep., 2014, vol. 15, no. 4, pp. 438–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao, G.J., Chen, X., Li, X.L., et al., Functional polymorphism of NRF2 gene promoter–617C/A in lipopolysaccharide-stimulated peripheral blood mononuclear cellular inflammatory response in patients with alcoholic liver disease, Zhonghua Nei Ke Za Zhi, 2013, vol. 52, no. 7, pp. 581–584.

    CAS  PubMed  Google Scholar 

  73. Qiu, Q.M., Zheng, J.T., Nan, C., et al., Effects of NFE2-related factor-2 promoter polymorphism on lipopolysaccharide-induced inflammatory responses in macrophages, Zhonghua Yi Xue Za Zhi, 2013, vol. 93, no. 14, pp. 1114–1117.

    CAS  PubMed  Google Scholar 

  74. Suzuki, T., Shibata, T., Takaya, K., et al., Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels, Mol. Cell. Biol., 2013, vol. 33, no. 12, pp. 2402–2412. doi 10.1128/MCB.00065-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hartikainen, J.M., Tengström, M., Kosma, V.M., et al., Genetic polymorphisms and protein expression of NRF2 and Sulfiredoxin predict survival outcomes in breast cancer, Cancer Res., 2012, vol. 72, no. 21, pp. 5537–5546.

    Article  CAS  PubMed  Google Scholar 

  76. Hayes, J.D. and McMahon, M., The double-edged sword of Nrf2: subversion of redox homeostasis during the evolution of cancer, Mol. Cell, 2006, vol. 21, no. 6, pp. 732–734.

    Article  CAS  PubMed  Google Scholar 

  77. Acharya, A., Das I., Chandhok, D., and Saha, T., Redox regulation in cancer: a double-edged sword with therapeutic potential, Oxid. Med. Cell. Longevity, 2010, vol. 3, no. 1, pp. 23–34. doi 10.4161/oxim.3.1.10095

    Article  Google Scholar 

  78. Su, Z.Y., Shu, L., Khor, T.O., et al., A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress,Nrf2,and epigenomics, Top Curr. Chem., 2013, vol. 329, pp. 133–162. doi 10.1007/128_2012_340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fuentes, F., Paredes-Gonzalez, X., and Kong, A.T., Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3'-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy, Curr. Pharmacol. Rep., 2015, vol. 1, no. 3, pp. 179–196.

    CAS  Google Scholar 

  80. Kim, J. and Keum, Y.S., NRF2, a key regulator of antioxidants with two faces towards cancer, Oxid. Med. Cell. Longevity, 2016, vol. 2016, p. 2746457. doi 10.1155/2016/2746457

    Google Scholar 

  81. Cho, H.Y., Marzec, J., and Kleeberger, S.R., Functional polymorphisms in NRF2: implications for human disease, Free Radical Biol. Med., 2015, vol. 88, pp. 362–372. doi 10.1016/j.freeradbiomed.2015. 06.012

    Article  CAS  Google Scholar 

  82. Marzec, J.M., Christie, J.D., Reddy, S.P., et al., Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury, Faseb. J., 2007, vol. 21, pp. 2237–2246.

    Article  CAS  PubMed  Google Scholar 

  83. O’Mahony, D.S., Glavan, B.J., Holden, T.D., et al., Inflammation and immune-related candidate gene associations with acute lung injury susceptibility and severity: a validation study, PLoS One, 2012, vol. 7. e51104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Masuko, H., Sakamoto, T., Kaneko, Y., et al., Lower FEV1 in non-COPD, nonasthmatic subjects: association with smoking, annual decline in FEV1, total IgE levels, and TSLP genotypes, Int. J. Chronic Obstruct. Pulm. Dis., 2011, vol. 6, pp. 181–189.

    Google Scholar 

  85. Masuko, H., Sakamoto, T., Kaneko, Y., et al., An interaction between Nrf2 polymorphisms and smoking status affects annual decline in FEV1: a longitudinal retrospective cohort study, BMC Med. Genet., 2011, vol. 12, p. 97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sasaki, H., Suzuki, A., Shitara, M., et al., Polymorphisms of NRF2 gene correlated with decreased FEV1 in lung cancers of smokers, Biomed. Rep., 2013, vol. 1, pp. 484–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Siedlinski, M., Postma, D.S., Boer, J.M., et al., Level and course of FEV1 in relation to polymorphisms in NFE2L2 and KEAP1 in the general population, Respir. Res., 2009, vol. 10, p. 73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Figarska, S.M., Vonk, J.M., and Boezen, H.M., NFE2L2 polymorphisms, mortality, and metabolism in the general population, Physiol. Genomics, 2014, vol. 46, pp. 411–417.

    CAS  PubMed  Google Scholar 

  89. Ungvari, I., Hadadi, E., Virag, V., et al., Relationship between air pollution, NFE2L2 gene polymorphisms and childhood asthma in a Hungarian population, J. Community Genet., 2012, vol. 3, pp. 25–33.

    Google Scholar 

  90. Canova, C., Dunster, C., Kelly, F.J., et al., PM10-induced hospital admissions for asthma and chronic obstructive pulmonary disease: the modifying effect of individual characteristics, Epidemiology, 2012, vol. 23, pp. 607–615.

    Article  PubMed  Google Scholar 

  91. Henderson, A.J., Newson, R.B., Rose-Zerilli, M., et al., Maternal Nrf2 and gluthathione-S-transferase polymorphisms do not modify associations of prenatal tobacco smoke exposure with asthma and lung function in school-aged children, Thorax, 2010, vol. 65, pp. 897–902.

    Article  CAS  PubMed  Google Scholar 

  92. Shaheen, S.O., Newson, R.B., Ring, S.M., et al., Prenatal and infant acetaminophen exposure, antioxidant gene polymorphisms, and childhood asthma, J. Allergy Clin. Immunol., 2010, vol. 126, pp. 1141–1148.

    CAS  Google Scholar 

  93. Sampath, V., Garland, J.S., Helbling, D., et al., Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants, Pediatr. Res., 2015, vol. 77, pp. 477–483

    Article  CAS  PubMed  Google Scholar 

  94. Chumachenko, A.G., Myazin, A.E., Kuzovlev, A.N., et al., Allelic variants of NRF2 and TLR9 genes under critical conditions, Obshch. Reanimatol., 2016, vol. 12, no. 4, pp. 8–23.

    Article  Google Scholar 

  95. Synowiec, E., Sliwinski, T., Danisz, K., et al., Association between polymorphism of the NQO1, NOS3 and NFE2L2 genes and AMD, Front. Biosci., 2013, vol. 18, pp. 80–90.

    CAS  Google Scholar 

  96. Pujol-Lereis, L.M., Schäfer, N., Kuhn, L.B., et al., Interrelation between oxidative stress and complement activation in models of age-related macular degeneration, Adv. Exp. Med. Biol., 2016, vol. 854, pp. 87–93.

    Article  CAS  PubMed  Google Scholar 

  97. Liu, W., Wu, H., Chen, L., et al., Park7 interacts with p47(phox) to direct NADPH oxidase-dependent ROS production and protect against sepsis, Cell. Res., 2015, vol. 25, no. 6, pp. 691–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Benmohamed, F., Medina, M., Wu, Y.Z., et al., Tolllike receptor 9 deficiency protects mice against Pseudomonas aeruginosa lung infection, PLoS One, 2014, vol. 9, no. 3. e90466

    Article  PubMed  PubMed Central  Google Scholar 

  99. Osburn, W.O. and Kensler, T.W., Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults, Mutat. Res., 2008, vol. 659, nos. 1–2, pp. 31–39.

    Article  CAS  PubMed  Google Scholar 

  100. Li, H., Zhao, J., Chen, M., et al., Toll-like receptor 9 is required for chronic stress-induced immunesuppression, Neuroimmunomodulation, 2014, vol. 21, no. 1, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  101. Shimoyama, Y., Mitsuda, Y., Tsuruta, Y., et al., Polymorphism of Nrf2, an antioxidative gene, is associated with blood pressure and cardiovascular mortality in hemodialysis patients, Int. J. Med. Sci., 2014, vol. 11, pp. 726–731.

    CAS  PubMed  Google Scholar 

  102. Bouligand, J., Cabaret, O., Canonico, M., et al., Effect of NFE2L2 genetic polymorphism on the association between oral estrogen therapy and the risk of venous thromboembolism in postmenopausal women, Clin. Pharmacol. Ther., 2011, vol. 89, pp. 60–64.

    Article  CAS  PubMed  Google Scholar 

  103. Wang, B., Liu, M., Yan, W., et al., Association of SNPs in genes involved in folate metabolism with the risk of congenital heart disease, J. Matern.-Fetal Neonat. Med., 2013, vol. 26, pp. 1768–1777.

    Article  CAS  Google Scholar 

  104. Marczak, E.D., Marzec, J., Zeldin, D.C., et al., Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans, Pharmacogenet. Genomics, 2012, vol. 22, pp. 620–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kunnas, T., Määttä, K., and Nikkari, S.T., Genetic polymorphisms of transcription factor NRF2 and of its host gene sulfiredoxin (SRXN1) are associated with cerebrovascular disease in a Finnish cohort, the TAMRISK study, Int. J. Med. Sci., 2016, vol. 13, no. 5, pp. 325–329. doi 10.7150/ijms.14849

    Article  PubMed  Google Scholar 

  106. Yu, B. and Huang, Z., Variations in antioxidant genes and male infertility, Biomed. Res. Int., 2015, vol. 2015, p. 513196. doi 10.1155/2015/513196

    PubMed  PubMed Central  Google Scholar 

  107. Nakamura, B.N., Lawson, G., Chan, J.Y., et al., Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner, Free Radical Biol. Med., 2010, vol. 49, no. 9, pp. 1368–1379.

    Article  CAS  Google Scholar 

  108. Yu, B., Lin, H., Yang, L., et al., Genetic variation in the Nrf2 promoter associates with defective spermatogenesis in humans, J. Mol. Med., 2012, vol. 90, no. 11, pp. 1333–1342.

    Article  CAS  PubMed  Google Scholar 

  109. Yu, B., Chen, J., Liu, D., et al., Cigarette smoking is associated with human semen quality in synergy with functional NRF2 polymorphisms, Biol. Reprod., 2013, vol. 89, no. 1, article 5.

    Article  PubMed  CAS  Google Scholar 

  110. Chen, K., Mai, Z., Zhou, Y., et al., Low NRF2 mRNA expression in spermatozoa from men with low sperm motility, Tohoku J. Exp. Med., 2012, vol. 228, no. 3, pp.259–266.

    Article  CAS  PubMed  Google Scholar 

  111. An, C.-N., Jiang, H., Wang, Q., et al., Down-regulation of DJ-1 protein in the ejaculated spermatozoa from Chinese asthenozoospermia patients, Fertility Sterility, 2011, vol. 96, no. 1, pp. 19–23. e2

    Article  CAS  PubMed  Google Scholar 

  112. Clements, C.M., McNally, R.S., Conti, B.J., et al., DJ-1,a cancer-and Parkinson’s disease-associated protein,stabilizes the antioxidant transcriptional master regulator Nrf2, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 41, pp. 15091–15096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moscovitz, O., Ben-Nissan, G., Fainer, I., et al., The Parkinson’s-associated protein DJ-1 regulates the 20S proteasome, Nat. Commun., 2015, vol. 6, article 6609.

    Article  CAS  PubMed  Google Scholar 

  114. Bouligand, J., Cabaret, O., Canonico, M., et al., Effect of NFE2L2 genetic polymorphism on the association between oral estrogen therapy and the risk of venous thromboembolism in postmenopausal women: Estrogen and Thromboembolism Risk (ESTHER) Study Group, Clin. Pharmacol. Ther., 2011, vol. 89, no. 1, pp. 60–64.

    Article  CAS  PubMed  Google Scholar 

  115. Morozova, K.V., Gene polymorphism in detoxification enzymes and DNA repair in the genesis of miscarriage, Cand. Sci. (Chem.) Dissertation, Moscow: Ross. Nats. Issled. Med. Univ. im. N.I. Pirogova, 2014.

    Google Scholar 

  116. Aleksunes, L.M. and Manautou, J.E., Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease, Toxicol. Pathol., 2007, vol. 35, no. 4, pp. 459–473.

    Article  CAS  PubMed  Google Scholar 

  117. Arisawa, T., Tahara, T., Shibata, T., et al., The influence of promoter polymorphism of nuclear factorerythroid 2-related factor 2 gene on the aberrant DNA methylation in gastric epithelium, Oncol. Rep., 2008, vol. 19, pp. 211–216.

    CAS  PubMed  Google Scholar 

  118. Arisawa, T., Tahara, T., Shibata, T., et al., Nrf2 gene promoter polymorphism and gastric carcinogenesis, Hepato—Gastroenterology, 2008, vol. 55, pp. 750–754.

    CAS  PubMed  Google Scholar 

  119. Arisawa, T., Tahara, T., Shibata, T., et al., Nrf2 gene promoter polymorphism is associated with ulcerative colitis in a Japanese population, Hepato—Gastroenterology, 2008, vol. 55, pp. 394–397.

    CAS  PubMed  Google Scholar 

  120. Wang, X., Chen, H., Liu, J., et al., Association between the NF-E2 related factor 2 gene polymorphism and oxidative stress, anti-oxidative status, and newly-diagnosed type 2 diabetes mellitus in a Chinese population, Int. J. Mol. Sci., 2015, vol. 16, no. 7, pp. 16483–16496. doi 10.3390/ijms160716483

    CAS  Google Scholar 

  121. Jiménez-Osorio, A.S., González-Reyes, S., García-Niño, W.R., et al., Association of nuclear factor-erythroid 2-related factor 2, thioredoxin interacting protein, and heme oxygenase-1 gene polymorphisms with diabetes and obesity in Mexican patients, Oxid. Med. Cell. Longevity, 2016, vol. 2016, pp. 736–7641. doi 10.1155/2016/7367641

    Google Scholar 

  122. von Otter, M., Landgren, S., Nilsson, S., et al., Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson’s disease, BMC Med. Genet., 2010, vol. 11, p. 36.

    Article  CAS  Google Scholar 

  123. von Otter, M., Landgren, S., Nilsson, S., et al., Nrf2-encoding NFE2L2 haplotypes influence disease progression but not risk in Alzheimer’s disease and agerelated cataract, Mechanisms Ageing Dev., 2010, vol. 131, pp. 105–110.

    Article  CAS  Google Scholar 

  124. von Otter, M., Bergstrom, P., Quattrone, A., et al., Genetic associations of Nrf2-encoding NFE2L2 variants with Parkinson inverted question marks disease inverted question mark a multicenter study, BMC Med. Genet., 2014, vol. 15, p. 131.

    Article  CAS  Google Scholar 

  125. Bergstrom, P., von Otter, M., Nilsson, S., et al., Association of NFE2L2 and KEAP1 haplotypes with amyotrophic lateral sclerosis, Amyotrophic Lateral Scler. Frontotemporal Degener., 2014, vol. 15, pp. 130–137.

    Article  CAS  Google Scholar 

  126. Todorovic, M., Newman, J.R., Shan, J., et al., Comprehensive assessment of genetic sequence variants in the antioxidant ‘master regulator’ NRF2 in idiopathic Parkinson’s disease, PLoS One, 2015, vol. 10, no. 5. e0128030. doi 10.1371/journal.pone.0128030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Chen, Y.C., Wu, Y.R., Wu, Y.C., et al., Genetic analysis of NFE2L2 promoter variation in Taiwanese Parkinson’s disease, Parkinsonism Relat. Disord., 2013, vol. 19, no. 2, pp. 247–250. doi 10.1016/j.parkreldis.2012. 10.018

    Article  PubMed  Google Scholar 

  128. Liu, Z., Yin, X., Liu, L., et al., Association of KEAP1 and NFE2L2 polymorphisms with temporal lobe epilepsy and drug resistant epilepsy, Gene, 2015, vol. 571, no. 2, pp. 231–236. doi 10.1016/j.gene.2015.06.055

    Article  CAS  PubMed  Google Scholar 

  129. Popa-Wagner, A., Mitran, S., Sivanesan, S., et al., ROS and brain diseases: the good, the bad, and the ugly, Oxid. Med. Cell. Longevity, 2013, vol. 2013, p. 963520. doi 10.1155/2013/963520

    Google Scholar 

  130. Napoli, E., Wong, S., Hertz-Picciotto, I., and Giulivi, C., Deficits in bioenergetics and impaired immune response in granulocytes from children with autism, Pediatrics, 2014., vol. 133, no. 5. e1405–e1410. doi 10.1542/peds.2013-1545

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Porokhovnik.

Additional information

Original Russian Text © L.N. Porokhovnik, V.M. Pisarev, 2017, published in Genetika, 2017, Vol. 53, No. 8, pp. 895–910.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porokhovnik, L.N., Pisarev, V.M. Association of polymorphisms in NFE2L2 gene encoding transcription factor Nrf2 with multifactorial diseases. Russ J Genet 53, 851–864 (2017). https://doi.org/10.1134/S1022795417080051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417080051

Keywords

Navigation