Skip to main content
Log in

Hard inbreeding under extreme environmental conditions is the most important factor of microevolution and speciation

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The ideas on the evolutionary value of hard inbreeding under conditions of extreme environmental conditions (especially temperatures) for the processes of the formation of adaptive genetic polymorphism and speciation are substantiated. The main manifestations of the paradoxical effect of hard inbreeding include (1) structural and functional reorganization of the genome of generative (reproductive) system and (2) activation of mobile genetic elements. This can lead to the generation of different types of mutations (gene, chromosomal, genomic, and systemic) and heterochromatin modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stegnii, V.N., Arkhitektonika genoma, sistemnye mutatsii i evolyutsiya (Genome Architecture, Systemic Mutations, and Evolution), Novosibirsk: Novosibirsk Gos. Univ., 1993.

    Google Scholar 

  2. Maletskii, S.I., Yudanova, S.S., and Maletskaya, E.I, Epigenomic and epiplastome variability among the haploid and dihaploid sugar beet (Beta vulgaris L.) plants, S.-kh. Biol., 2015, vol. 50, no. 5, pp. 579–589.

    Google Scholar 

  3. Kislovskii, D.A, The problem of mastering the evolution of domestic animals, Izv. Akad. Nauk, Ser. Biol., 1937, no. 1, pp. 121–173.

    Google Scholar 

  4. Darwin, C., The Variation of Animals and Plants under Domestication, London: John Murray, 1868.

    Google Scholar 

  5. Sakharov, V.V. and Magrzhikovskaya, K.V, The effect of inbreeding on the rate of the mutational frequency, Dokl. Akad. Nauk SSSR, 1941, vol. 31, no. 6, pp. 622–624.

    Google Scholar 

  6. Kaidanov, L.Z, Analysis of the genetic consequences of selection and inbreeding in Drosophila melanogaster, Zh. Obshch. Biol., 1979, vol. 40, pp. 834–850.

    Google Scholar 

  7. Gvozdev, V.A. and Kaidanov, L.Z, Genomic variability due to transpositions of mobile genetic elements, and the fitness of Drosophila melanogaster individuals, Zh. Obshch. Biol., 1986, vol. 47, pp. 51–63.

    Google Scholar 

  8. Kaidanov, L.Z., Myl’nikov, S.V., Galkin, A.P., et al., Genetic effects of destabilizing selection for adaptive traits of Drosophila melanogaster, Russ. J. Genet.,1997, vol. 33, no. 8, pp. 935–942.

  9. Iovleva, O.V., Study of the genetic heterogeneity of the highly inbred Drosophila melanogaster lines, Cand. Sci. (Biol.) Dissertation, St. Petersburg: St. Petersburg State Univ., 2001.

    Google Scholar 

  10. Biemont, C., Arnault, C., and Heizmann, A, Massive changes in genomic localizations of P elements in an inbred line of Drosophila melanogaster, Naturwissenschaften, 1990, vol. 77, pp. 485–488.

    Article  CAS  PubMed  Google Scholar 

  11. Lim, J.K., Site-specific intrachromosomal rearrangements in Drosophila melanogaster: cytogenetic evidence for transposable elements, Cold Spring Harbor Symp. Quant. Biol., 1981, vol. 45, pp. 553–560.

    Article  PubMed  Google Scholar 

  12. Belyaeva, E.Sp., Pasyukova, E.G., Gvozdev, V.A., et al., Transpositions of mobile dispersed genes in Drosophila melanogaster, identified by selection, Genetika (Moscow), 1981, vol. 17, no. 9, pp. 1566–1580.

    Google Scholar 

  13. Ratner, V.A. and Vasil’eva, L.A, Mobile genetic elements and quantitative traits in Drosophila: facts and hypotheses, Genetika (Moscow), 1992, vol. 28, no. 11, pp. 15–27.

    CAS  Google Scholar 

  14. Hay, B.A., Maile, R., and Rubin, G.M., P-element insertion-dependent gene activation in the Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 10, pp. 5195–5200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sneddon, A. and Flavell, A.J, The transcriptional control regions of the copia retrotransposon, Nucleic Acids. Res., 1989, vol. 17, no. 11, pp. 4025–4036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arkhipova, I.R. and Il’in, Yu.V., Organization of promoter regions in the Drosophila retrotransposons, Mol. Biol. (Moscow), 1991, vol. 25, no. 1, pp. 69–76.

    CAS  Google Scholar 

  17. Vasil’eva, L.A., Ratner, V.A., and Bubenshchikova, E.V, Stress induction of retrotransposon transpositions in Drosophila: reality of the phenomenon, characteristic features, and possible role in rapid evolution, Russ. J. Genet., 1997, vol. 33, no. 8, pp. 918–927.

    Google Scholar 

  18. Vaury, C., Bucheton, A., and Pellison, A, The ß-heterochrometic sequences flanking the I elements are themselves defective transposable elements, Chromosoma, 1989, vol. 98, pp. 215–224.

    Article  CAS  PubMed  Google Scholar 

  19. Stegnii, V.N. and Sharakhova, M.V, Systemic reorganization of the polytene chromosomes’ architecture at onto- and phylogenetic levels in malarial mosquitos: structural peculiarities of chromosomes attachment to nuclear envelope, Genetika (Moscow), 1991, vol. 27, no. 5, pp. 828–835.

    CAS  Google Scholar 

  20. Stegnii, V.N., Vasserlauf, I.E., and Anan’ina, T.V, Identification, relative position, and development of primary polytene chromosomes in trophocyte nuclei of Calliphora erythrocephala (Diptera: Calliphoridae), Russ. J. Genet., 1999, vol. 35, no. 7, pp. 778–783.

    CAS  Google Scholar 

  21. Bier, K, Endomitose und polytänie in den Nährzellenkernen von Calliphora erythrocephala Meigen, Chromosoma, 1957, vol. 8, pp. 161–166.

    Google Scholar 

  22. Storto, P.D. and King, R.C, Fertile heteroallelic combinations of mutant alleles of the otu locus of Drosoplila melanogaster, Roux’s Arch. Dev. Biol., 1987, vol. 196, p. 210.

    Article  Google Scholar 

  23. Burlak, V.A., Sharakhova, M.V., Sharakhov, I.V., et al., Variability of centromeric chromatin in chromosome 2 of ovarian nurse cells in inbred mosquito Anopheles atroparvus V. Tiel., Russ. J. Genet., 1998, vol. 34, no. 7, pp. 827–830.

    CAS  Google Scholar 

  24. Stegnii, V.N, Reorganization of the structure of interphase nuclei in ontogeny and phylogeny of malaria mosquitoes, Dokl. Akad. Nauk SSSR, 1979, vol. 249, no. 5, p. 1231.

    CAS  PubMed  Google Scholar 

  25. Sharakhova, M.V., Braginets, O.P., and Stegnii, V.N, Spatial organization of polytene chromosomes in ovarian trophocyte nuclei of the malaria mosquito Anopheles labranchiae Fall., Tsitologiya, 1999, vol. 41, nos. 3–4, pp. 226–229.

    CAS  Google Scholar 

  26. Rusakova, A.M. and Stegnii, V.N, Cytogenetic analysis of polytene chromosomes of the Anopheles freeborni ovarian trophocytes, in Entomologicheskie issledovaniya v Severnoi Azii (Entomological Research in North Asia), Novosibirsk, 2006, pp. 126–127.

    Google Scholar 

  27. Vasserlauf, I.E., Shelkovnikova, T.A., Mitrenina, E.Yu., and Stegnii, V.N, The effects of inbreeding and low temperature on the pattern of chromosome synapsis in the ovarian nurse cell nuclei of Drosophila melanogaster strains, Russ. J. Genet., 2008, vol. 44, no. 8, pp. 928–935.

    Article  Google Scholar 

  28. Medvedeva, A.V. and Savvateeva, E.V, Effect of temperature on the spatial organization of polytene chromosomes of Drosophila mutants with altered functions of calmodulin, Dokl. Akad. Nauk SSSR, 1991, vol. 318, no. 4, pp. 988–991.

    CAS  PubMed  Google Scholar 

  29. Hartmann-Goldstein, I. and Goldstein, D.J, Effect of temperature on morphology and DNA-content of polytene chromosomes in Drosophila, Chromosoma, 1979, vol. 71, pp. 333–346.

    Article  CAS  PubMed  Google Scholar 

  30. Pokhmel’nykh, G.A. and Shumnyi, V.K, On the nature of heterochromatic nodal regions of chromosomes in maize, Genetika (Moscow), 1984, vol. 20, no. 10, pp. 1649–1662.

    Google Scholar 

  31. Pokhmel’nykh, G.A. and Shumnyi, V.K, On the nature of heterochromatic nodal regions of chromosomes in maize: 3. Polymorphism by chromosome nodal regions of a multi-node corn line during inbreeding and cross pollination of plants, Genetika (Moscow), 1985, vol. 21, no. 4, pp. 614–623.

    Google Scholar 

  32. Yoon, J.S. and Richardson, R.H., A mechanism of chromosomal rearrangements: the role of heterochromatin and ectopic joining, Genetics, 1978, vol. 88, pp. 305–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Baimai, V., Andre, R.G., and Harrison, B.A, Heterochromatin variation in the sex chromosomes in Thailand populations of Anopheles dirus A (Diptera: Culicidae), Can. J. Genet. Cytol., 1984, vol. 26, no. 5, pp. 633–636.

    Article  Google Scholar 

  34. Baimai, V, Heterochromatin accumulation and karyotypic evolution in some dipterian insects, Zool. Stud., 1998, vol. 37, no. 2, pp. 75–88.

    Google Scholar 

  35. Evgeniev, M., Yenikolopov, G., Peunova, N., and Ilyin, Y, Transposition of mobile genetic elements of interspecific hybrids of Drosophila, Chromosoma, 1982, vol. 85, no. 3, pp. 375–386.

    Article  Google Scholar 

  36. Carmena, M. and Gonzalez, C, Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster, Chromosoma, 1995, vol. 103, pp. 676–684.

    Article  CAS  PubMed  Google Scholar 

  37. Evgen’ev, M.B., Mndzhoyan, E.I., Zelentsova, E.S., et al., Mobile elements and speciation, Mol. Biol. (Moscow), 1998, vol. 32, no. 1, pp. 161–169.

    Google Scholar 

  38. Anxolabehere, D., Kidwell, M.G., and Periquet, G, Molecular characteristics of diverse population are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements, Mol. Biol. Evol., 1988, vol. 5, no. 3, pp. 252–269.

    CAS  PubMed  Google Scholar 

  39. Kiknadze, I.I., Istomina, A.G., and Salova, T.A, Functional morphology of polytene chromosomes of Chironomus pilicornis F. from cryolithozone reservoirs, Tsitologiya, 2002, vol. 44, no. 1, pp. 89–95.

    CAS  Google Scholar 

  40. Vasilyeva, L.A. and Ratner, V.A, Comparative analysis of MGE 412 patterns in 18 isogenic lines of Drosophila melanogaster, Russ. J. Genet., 2003, vol. 39, no. 3, pp. 276–282. doi 10.1023/A:1023247800212

    Article  CAS  Google Scholar 

  41. Sved, I.A, Hybrid dysgenesis in Drosophila melanogaster: a possible explanation in terms of spatial organization of chromosomes, Aust. J. Biol. Sci., 1976, vol. 29, pp. 375–388.

    Article  CAS  PubMed  Google Scholar 

  42. Stegnii, V.N., Kabanova, V.M., Novikov, Yu.M., and Pleshkova, G.N, Inversion polymorphism of the malarial mosquito Anopheles messeae: 1. Distribution of inversions along the species range, Genetika (Moscow), 1976, vol. 12, no. 4, pp. 47–54.

    Google Scholar 

  43. Lindgren, B. and Laurila, A, Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria, J. Evol. Biol., 2005, vol. 18, pp. 820–828.

    Article  CAS  PubMed  Google Scholar 

  44. Sørensen, J.G., Norry, F.M., Scannapieco, A.C., and Loeschcke, V, Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World, J. Evol. Biol., 2005, vol. 18, pp. 829–837.

    Article  PubMed  Google Scholar 

  45. Relyea, R.A, The heritability of inducible defenses in tadpoles, J. Evol. Biol., 2005, vol. 18, pp. 856–866.

    Article  CAS  PubMed  Google Scholar 

  46. Pedersen, K.S., Kristensen, T.N., and Loeschcke, V, Effects of inbreeding and rate of inbreeding in Drosophila melanogaster—Hsp70 expression and fitness, J. Evol. Biol., 2005, vol. 18, pp. 756–762.

    Article  CAS  PubMed  Google Scholar 

  47. Stegnii, V.N., Populyatsionnaya genetika i evolyutsiya malyariinykh komarov (Population Genetics and Evolution of Malarial Mosquitoes), Tomsk: Tomsk Univ., 1991.

    Google Scholar 

  48. Bijlsma, R., Bundgaard, J., and Boerema, A.C, Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila, J. Evol. Biol., 2000, vol. 13, pp. 502–514.

    Article  Google Scholar 

  49. Keller, L.F., Grant, P.R., Grant, B.R., and Petren, K, Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin’s finches, Evolution, 2002, vol. 56, pp. 1229–1239.

    Article  PubMed  Google Scholar 

  50. Frankham, R, Stress and adaptation in conservation genetics, J. Evol. Biol., 2005, vol. 18, pp. 750–755.

    Article  CAS  PubMed  Google Scholar 

  51. Kristensen, T.N., Sørensen, A.C., Sørensen, D., et al., A test of quantitative genetic theory using Drosophila— effects of inbreeding and rate of inbreeding on heritabilities and variance components, J. Evol. Biol., 2005, vol. 18, pp. 763–770.

    Article  CAS  PubMed  Google Scholar 

  52. Lucy, I., Wright, E.T., Tregenza, D., and Hosken, J, Inbreeding, inbreeding depression and extinction, Conserv. Genet., 2007, vol. 9, pp. 833–843.

    Google Scholar 

  53. Arshavskii, I.A., Fiziologicheskie mekhanizmy individual’nogo razvitiya (Physiological Mechanisms of Individual Development), Moscow: Nauka, 1982.

    Google Scholar 

  54. Sel’e, G., Na urovne tselogo organizma (At the Level of the Whole Organism), Moscow: Nauka, 1972.

    Google Scholar 

  55. Pokrovskii, V.B, Multi-inductive (polyhormonal) control of gene expression in eukaryotes, Usp. Sovrem. Biol., 1983, vol. 95, no. 2, pp. 194–207.

    CAS  Google Scholar 

  56. Bozhko, G.Kh., Molecular mechanisms of interaction of catecholamines and elements of the cell genome, Vopr. Med. Khim., 1984, vol. 30, no. 4, pp. 12–17.

    CAS  PubMed  Google Scholar 

  57. Naumenko, E.V., Popova, N.K., and Ivanova, L.N, Neuroendocrine and neurochemical mechanisms of animal domestication, Genetika (Moscow), 1987, vol. 23, no. 6, pp. 1011–1025.

    CAS  Google Scholar 

  58. Belyaev, D.K., Isakova, G.K., and Trut, L.N, Early embryonic development of silver-black foxes under domestication process, Zh. Obshch. Biol., 1986, vol. 47, no. 4, pp. 450–452.

    Google Scholar 

  59. Borodin, P.M. and Belyaev, D.K, Effect of emotional stress on the frequency of recombination in chromosome 1 of a house mouse, Dokl. Akad. Nauk SSSR, 1986, vol. 286, no. 3, pp. 726–728.

    CAS  PubMed  Google Scholar 

  60. Mitskevich, M.S., Gormonal’nye regulyatsii v ontogeneze zhivotnykh (Hormonal Regulation in Animal Ontogenesis), Moscow: Nauka, 1978.

    Google Scholar 

  61. Buznikov, G.A., Neirotransmittery v embriogeneze (Neurotransmitters in Embryogenesis), Moscow: Nauka, 1987.

    Google Scholar 

  62. McClintok, B, The significance of responses of the genome to challenge, Science, 1984, vol. 266, no. 4676, pp. 792–801.

    Article  Google Scholar 

  63. Kaidanov, L.Z, Analysis of the genetic consequences of selection and inbreeding in Drosophila melanogaster, Zh. Obshch. Biol., 1979, vol. 40, pp. 834–850.

    Google Scholar 

  64. Stegnii, V.N, The problem of systemic mutations, Russ. J. Genet., 1996, vol. 32, no. 1, pp. 9–16.

    Google Scholar 

  65. Stegnii, V.N., Tsitogenetika evolyutsionnogo protsessa: uchebno-metodicheskoe posobie (Cytogenetics of the Evolutionary Process: A Guidance Manual), Tomsk: Tomsk. Gos. Univ., 2013.

    Google Scholar 

  66. Lexer, C. and Fay, M.F, Adaptation to environmental stress: a rare or frequent driver of speciation?, J. Evol. Biol., 2005, vol. 18, pp. 893–900.

    Article  CAS  PubMed  Google Scholar 

  67. Altukhov, Yu.P. and Rychkov, Yu.G., Genetic monomorphism of species and its possible biological significance, Zh. Obshch. Biol., 1972, vol. 33, no. 3, pp. 281–294.

    CAS  PubMed  Google Scholar 

  68. Goldschmidt, R.B, Evolution as viewed by one geneticist, Am. Sci., 1952, vol. 40, no. 1, pp. 84–94.

    Google Scholar 

  69. Stegnii, V.N., Evolutionary potency of chromosomally monomorphic and polymorphic species, in Fenetika populyatsii (Phenetics of Populations), Moscow: Nauka,1982, p. 112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Stegniy.

Additional information

Original Russian Text © V.N. Stegniy, 2017, published in Genetika, 2017, Vol. 53, No. 7, pp. 785–794.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stegniy, V.N. Hard inbreeding under extreme environmental conditions is the most important factor of microevolution and speciation. Russ J Genet 53, 757–765 (2017). https://doi.org/10.1134/S1022795417070109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417070109

Keywords

Navigation