Skip to main content
Log in

Novel SlFUL2 orthologous genes and analysis of their expression in wild and cultivated tomato of the section Lycopersicon

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

FRUITFULL (FUL) transcription factors, SlFUL1 and SlFUL2, are directly involved in the regulation of tomato fruit development. In the present study, complete sequences of novel SlFUL2 orthologous genes were isolated and structurally characterized in five accessions of domestic tomato Solanum lycopersicum and closely related wild species S. pimpinellifolium, having different morphological characteristics. In the studied genes, overall level of nucleotide sequence variation was 1.94%. Nine out of 11 exon-specific SNPs led to amino acid substitutions in the functionally important MADS, K, and C domains of the SlFUL2 orthologues. Considerable differences in the level and spatiotemporal dynamics of the expression patterns in different tomato organs at the species and intraspecific levels were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peralta, I.E. and Spooner, D.M., History, origin and early cultivation of tomato (Solanaceae), in Genetic Improvement of Solanaceous Crops, vol. 2: Tomato, Enfield: Science Publishers, 2006, pp. 1–27.

    Google Scholar 

  2. Chetelat, R.T. and Ji, Y., Cytogenetics and evolution, in Genetic Improvement of Solanaceous Crops, vol. 2: Tomato, Enfield: Science Publishers, 2006, pp. 77–112.

    Chapter  Google Scholar 

  3. Theißen, G., Development of floral organ identity: stories from the MADS house, Curr. Opin. Plant Biol., 2001, vol. 4, pp. 75–85.

    Article  PubMed  Google Scholar 

  4. Bemer, M., Karlova, R., Ballester, A.R., et al., The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening, Plant Cell, 2012, vol. 24, no. 11, pp. 4437–4451. doi 10.1105/tpc.112.103283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ito, Y., Regulation of tomato fruit ripening by MADSbox transcription factors, JARQ, 2016, vol. 50, no. 1, pp. 33–38.

    Article  Google Scholar 

  6. Fujisawa, M., Shima, Y., Nakagawa, H., et al., Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins, Plant Cell, 2014, vol. 26, no. 1, pp. 89–101. doi 10.1105/tpc.113.119453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, S., Lu, G., Hou, Z., et al., Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening, J. Exp. Bot., 2014, vol. 65, no. 12, pp. 3005–3014. doi 10.1093/jxb/eru137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kochieva, E.Z. and Suprunova, T.P., Identification of inter- and intraspecific polymorphism in tomato, Russ. J. Genet., 1999, vol. 35, no. 10, pp. 1194–1196.

    CAS  Google Scholar 

  9. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729. doi 10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. GraphPad Prism version 7.02 for Windows, San Diego, California: GraphPad Software. http://www.graphpad. com.

  11. Vandenbussche, M., Theissen, G., Van de Peer, Y., et al., Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations, Nucleic Acids Res., 2003, vol. 31, pp. 4401–4409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Parenicová, L., de Folter, S., Kieffer, M., et al., Molecular and phylogenetic analyses of the complete MADSbox transcription factor family in Arabidopsis: new openings to the MADS world, Plant Cell, 2003, vol. 15, pp. 1538–1551.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lutova, L.A., Ezhova, T.A., Dodueva, I.E., and Osipova, M.A., Genetic control of plant development, in Genetika razvitiya rastenii (Genetics of Plant Development), St. Petersburg: N-L, 2010.

    Google Scholar 

  14. Santelli, E. and Richmond, T.J., Crystal structure of MEF2A core bound to DNA at 1.5 Å resolution, J. Mol. Biol., 2000, vol. 297, no. 2, pp. 437–449.

    Article  CAS  PubMed  Google Scholar 

  15. Kaufmann, K., Melzer, R., and Theissen, G., MIKCtype MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants, Gene, 2005, vol. 347, pp. 183–198.

    Article  CAS  PubMed  Google Scholar 

  16. Hittinger, C. and Carroll, S., Gene duplication and the adaptive evolution of a classic genetic switch, Nature, 2007, vol. 449, pp. 677–682.

    Article  CAS  PubMed  Google Scholar 

  17. Litt, A. and Irish, V., Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development, Genetics, 2003, vol. 165, pp. 821–833.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Slugina.

Additional information

Original Russian Text © M.A. Slugina, A.V. Shchennikova, E.Z. Kochieva, 2017, published in Genetika, 2017, Vol. 53, No. 6, pp. 687–695.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slugina, M.A., Shchennikova, A.V. & Kochieva, E.Z. Novel SlFUL2 orthologous genes and analysis of their expression in wild and cultivated tomato of the section Lycopersicon. Russ J Genet 53, 672–679 (2017). https://doi.org/10.1134/S1022795417060126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417060126

Keywords

Navigation