Skip to main content
Log in

Genetic and morphological heterogeneity of Lake Baikal endemic gastropod Benedictia fragilis (Dybowski, 1875)

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Baikal endemic Benedictia fragilis gastropods distributed in a wide range of depths (from sublittoral to abyssal) of three lake basins are studied. The analysis of the nucleotide sequence of the COI mitochondrial gene fragment and internal transcribed nuclear DNA spacer (ITS1) demonstrates that the studied gastropods are represented in Lake Baikal by three genetic groups. The results of the studies on genetic diversity, phenotypic traits, and distribution allow us to assume that the detected groups are incipient allopatric (geographical) species. On the basis of the data obtained and geological and climatic history of Baikal, possible pathways of the B. fragilis resettlement in the lake and the emergence of three genetic groups are hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martens, K., Couter, G., and Goddeeris, B, Speciation in Ancient Lakes–40 years after Brooks, Arch. Hydrobiol. Adv. Limnol., 1994, vol. 44, pp. 75–96.

    Google Scholar 

  2. Timoshkin, O.A., Sitnikova, T.Ya., Rusinek, O.T., et al., Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina (Index of Animal Species Inhabiting Lake Baikal and Its Catchment Area), vol. 1: Ozero Baikal (Lake Baikal), Novosibirsk: Nauka,2001, book 1.

    Google Scholar 

  3. Föller, K., Stelbrink, B., Hauffe, T., et al., Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem residence likely buffers environmental fluctuation, Biogeosciences, 2015, vol. 12, pp. 7209–7222. doi 10.5194/bg-12-7209-2015

    Article  Google Scholar 

  4. Martens, K, Speciation in ancient lakes, Tree, 1997, vol. 12, pp. 177–182.

    CAS  PubMed  Google Scholar 

  5. Michel, E, Phylogeny of a gastropod species flock: exploring speciation in Lake Tanganyika in a molecular framework, in Ancient Lakes: Biodiversity, Ecology and Evolution. Advances in Ecological Research, San Diego: Academic Press, 2000, pp. 275–302.

    Chapter  Google Scholar 

  6. Schon, I. and Martens, K, Adaptive, pre-adaptive and non-adaptive components of radiations in ancient lakes: a review, Org. Divers. Evol., 2004, vol. 4, pp. 137–156. doi 10.1016/j.ode.2004.03.001

    Article  Google Scholar 

  7. Patterns and Processes of Speciation in Ancient Lakes (Proc. 4th Symp. Speciation in Ancient Lakes), Wilke, T., Väinölä, R., and Riedel, F, Eds., Berlin, Hydrobiol., 2006, vol. 615, pp. 1–3. doi 10.1007/s10750-008-9559-x

    Google Scholar 

  8. Cristescu, M.E., Adamowicz, S.J., Vaillant, J.J., and Haffner, D.G, Ancient lakes revisited: from the ecology to the genetics of speciation, Mol. Ecol., 2010, vol. 19, pp. 4837–4851. doi 10.1111/j.1365-294X.2010. 04832.x

    Article  PubMed  Google Scholar 

  9. Popova, S.M., Mats, V.D., Chernyaeva, G.P., et al., Paleolimnologicheskie rekonstruktsii: Baikal’skaya riftovaya zona (Baikal Rift Zone: Paleolimnological Reconstructions), Novosibirsk: Nauka, 1989.

    Google Scholar 

  10. Mats, V.D., Geological factors of the unique biodiversity of Lake Baikal, in Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina (Index of Animal Species Inhabiting Lake Baikal and Its Catchment Area), vol. 2, book 2: Vodoemy i vodotoki yuga Vostochnoi Sibiri i Severnoi Mongolii (Basins and Channels in South of East Siberia and North Mongolia), Novosibirsk: Nauka, 2001, pp. 1406–1419.

  11. Logachev, N.A, History and geodynamics of the Baikal rift, Geol. Geofiz., 2003, vol. 44, no. 5, pp. 391–406.

    Google Scholar 

  12. Karabanov, E.B., Sideleva, V.G., Vil’yams, D.F., et al., Glacial environmental stresses as a mechanism of speciation in Lake Baikal, Tret’ya Vereshchaginskaya Baikal’skaya konferentsiya: tezisy dokladov (Proceedings of the 3rd Vereshchagin Baikal Conference), Irkutsk, 2000, p. 104.

  13. Khursevich, G.K., Karabanov, E.B., Prokhorenko, A.A., et al., Detailed diatom biostratigraphy of the Baikal sediments during the Brunhes chron and climatic factors of species formation, Geol. Geofiz., 2001, vol. 42, no. 1–2, pp. 108–129.

    Google Scholar 

  14. Sitnikova, T.Ya., Starobogatov, Ya.I., Shirokaya, A.A., et al., Gastropod mollusks (Gastropoda), in Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina (Index of Animal Species Inhabiting Lake Baikal and Its Catchment Area), vol. 1: Ozero Baikal (Lake Baikal), Novosibirsk: Nauka, 2001, book 1, pp. 937–1002.

  15. Peretolchina, T.E., Bukin, Yu.S., Sitnikova, T.Ya., and Shcherbakov, D.Yu., Genetic differentiation of the endemic Baikalian mollusk Baicalia carinata (Mollusca: Caenogastropoda), Russ. J. Genet., 2007, vol. 43, no. 12, pp. 1400–1407.

    Article  CAS  Google Scholar 

  16. Sitnikova, T.Ya. and Shimaraev, M.N., Deep-water “dwarfs” and “giants” among endemic Baikal gastropods, Zh. Obshch. Biol., 2001, vol. 62, no. 3, pp. 226–238.

    PubMed  Google Scholar 

  17. Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, MA: Harvard Univ. Press, 2000.

    Google Scholar 

  18. Hebert, P.D.N., Ratnasingham, S., and de Waard, J.R, Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species, Proc. R. Soc. London, Ser. B, 2003, vol. 270, pp. 96–99. doi 10.1098/rsbl.2003.0025

    Article  Google Scholar 

  19. Layton, K.K., Martel, A.L., and Hebert, P.D, Patterns of DNA barcode variation in Canadian marine mollusks, PLoS One, 2014, vol. 9, no. 4. e95003. doi 10.1371/journal.pone.0095003

    Article  Google Scholar 

  20. Eilertsen, M.H. and Malaquias, M.A.E, Speciation in the dark: diversification and biogeography of the deepsea gastropod genus Scaphander in the Atlantic Ocean, J. Biogeogr., 2015, vol. 42, pp. 843–855. doi 10.1111/jbi.12471

    Article  PubMed  PubMed Central  Google Scholar 

  21. Whelan, N.V. and Strong, E.E, Morphology,molecules and taxonomy: extreme incongruence in pleurocerids (Gastropoda, Cerithioidea, Pleuroceridae), Zool. Scr., 2016, vol. 45, no. 1, pp. 62–87. doi 10.1111/zsc.12139

    Article  Google Scholar 

  22. Kovalenkova, M.V., Sitnikova, T.Ya., and Shcherbakov, D.Yu., Genetic and morphological diversification in gastropods of the Baicaliidae family, Ekol. Genet., 2013, vol. 11, no. 4, pp. 3–11.

    Google Scholar 

  23. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab.,1989, 2nd ed.

    Google Scholar 

  24. Folmer, O., Black, M., Hoeh, W., et al., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, pp. 294–299.

    CAS  PubMed  Google Scholar 

  25. Salim, M. and Maden, B.E, Nucleotide sequence of Xenopus laevis 18S ribosomal RNA inferred of gene sequence, Nature, 1981, vol. 291, pp. 205–208.

    Article  CAS  PubMed  Google Scholar 

  26. Nazar, R.N. and Roy, K.L, Nucleotide sequence of rainbow trout (Salmo gairdneri) ribosomal 5.8S ribonucleic acid, J. Biol. Chem., 1978, vol. 153, pp. 395–399.

    Google Scholar 

  27. Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X., and Rozas, R., DnaSP, DNA polymorphism analyses by the coalescent and other methods, Bioinformatics, 2003, vol. 19, pp. 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  28. Tajima, F, Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu, Y, Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection, Genetics, 1997, vol. 147, pp. 915–925.

    CAS  PubMed  Google Scholar 

  30. Excoffier, L., Laval, G., and Schneider, S, Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47–50.

    CAS  Google Scholar 

  31. Bandelt, H.-J., Forster, P., and Rohl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  32. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729. doi 10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guindon, S. and Gascuel, O., A simple, fast and accurate algorithm to estimate large phylogenies by “maximum-likelihood,” Syst. Biol., 2003, vol. 52, pp. 696–704.

    Article  PubMed  Google Scholar 

  34. Darriba, D., Taboada, G.L., Doallo, R., and Posada, D., jModelTest 2: more models, new heuristics and parallel computing, Nat. Meth., 2012, vol. 9, no. 8, p. 772. doi 10.1038/nmeth.2109

    Article  CAS  Google Scholar 

  35. Wilke, T, Salenthydrobia gen. nov. (Rissooidea: Hydrobiidae): a potential relict of the Messinian salinity crisis, Zool. J. Linn. Soc., 2003, vol. 137, no. 2, pp. 319–336. doi 10.1046/j.1096-3642.2003.00049.x

    Article  Google Scholar 

  36. Izzatullaev, Z.I. and Starobogatov, Ya.I, Genus Melanopsis (Gastropoda, Pectinibranchia) and its representatives inhabiting waters of the Soviet Union, Zool. Zh., 1984, vol. 63, no. 10, pp. 1471–1483.

    Google Scholar 

  37. Fazalova, V., Nevado, B., Peretolchina, T., et al., When environmental changes do not cause geographic separation of fauna: differential responses of Baikalian invertebrates, BMC Evol. Biol., 2010, vol. 10, p. 320. doi 10.1186/1471-2148-10-320

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Teterina.

Additional information

Original Russian Text © V.I. Teterina, N.V. Maximova, T.Ya. Sitnikova, S.V. Kirilchik, 2017, published in Genetika, 2017, Vol. 53, No. 5, pp. 612–620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teterina, V.I., Maximova, N.V., Sitnikova, T.Y. et al. Genetic and morphological heterogeneity of Lake Baikal endemic gastropod Benedictia fragilis (Dybowski, 1875). Russ J Genet 53, 606–613 (2017). https://doi.org/10.1134/S1022795417040135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417040135

Keywords

Navigation