Skip to main content
Log in

Molecular and genetic characterization of the allelic variants of Du215, Du281, Du323, and Du47G microsatellite loci in parthenogenetic lizard Darevskia armeniaca (Lacertidae)

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A key issue in the study of unisexual (parthenogenetic) vertebrate species is the determination of their genetic and clonal diversity. In pursuing this aim, various markers of nuclear and mitochondrial genomes can be used. The most effective genetic markers include microsatellite DNA, characterized by high variability. The development and characterization of such markers is a necessary step in the genetic studies of parthenogenetic species. In the present study, using locus-specific PCR, for the first time, an analysis of allelic polymorphism of four microsatellite loci is performed in the populations of parthenogenetic species Darevskia armeniaca. In the studied populations, allelic variants of each locus are identified, and the nucleotide sequences of each allele are determined. It is demonstrated that allele differences are associated with the variation in the structure of microsatellite clusters and single nucleotide substitutions at fixed distances in flanking DNA regions. Structural allele variations form haplotype markers that are specific to each allele and are inherited from their parental bisexual species. It is established which of the parental alleles of each locus were inherited by the parthenogenetic species. The characteristics of the distribution and frequency of the alleles of microsatellite loci in the populations of D. armeniaca determining specific features of each population are obtained. The observed heterozygosity of the populations at the studied loci and the mutation rates in genome regions, as well as Nei’s genetic distances between the studied populations, are determined, and the phylogenetic relationships between them are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darevsky, I.S., Evolution and ecology of parthenogenetic reproduction in reptiles, in Sovremennye problemy teorii evolyutsii (Modern Problems of Evolution Theory), Moscow: Nauka, 1993, pp. 89–109.

    Google Scholar 

  2. Darevsky, I.S., Kupriyanova, L.A., and Uzzel, T., Parthenogenesis in reptiles, Biology of the Reptiles, Gans, C. and Billett, F., Eds., vol. 15: Development B, Wiley: New York, 1985, pp. 412–526.

    Google Scholar 

  3. Moritz, C., Uzzel, T., Spolsky, C., et al., The maternal ancestry and approximate age of parthenogenetic species of Caucasian rock lizards (Lacerta: Lacertidae), Genetica, 1992, vol. 87, pp. 53–62.

    Article  CAS  Google Scholar 

  4. Murphy, R.W., Fu, J., MacCulloch, R.D., et al., A fine line between sex and unisexuality: the phylogenetic constraints on parthenogenesis in lacertid lizards, J. Linn. Soc. London, Zool., 2000, vol. 130, pp. 527–549. doi 10.1006/zjls.1999.0241

    Article  Google Scholar 

  5. Kearney, M., Blacket, M., Strasburg, J., and Moritz, C., FAST-TRACK: waves of parthenogenesis in the desert: evidence for the parallel loss of sex in a grasshopper and a gecko from Australia, Mol. Ecol., 2006, vol. 15, pp. 1743–1748. doi 10.1111/j.1365-294X.2006.02898.x

    Article  CAS  PubMed  Google Scholar 

  6. Manrquez-Moran, N.L., Mundez-de la Cruz, F.R., and Murphy, R.W., Genetic variation and origin of parthenogenesis in the Aspidoscelis cozumela complex: evidence from mitochondrial genes, Zool. Sci., 2014, vol. 31, pp. 14–19.

    Article  Google Scholar 

  7. Darevskii, I.S. and Shcherbak, N.N., Acclimatization of parthenogenetic lizards in Ukraine, Priroda (Moscow), 1968, no. 5, pp. 93–94.

    Google Scholar 

  8. MacCulloch, R.D., Murphy, R.W., Kupriyanova, L.A., and Darevsky, I.S., Clonal variation in the parthenogenetic rock lizard Lacerta armeniaca, Genome, 1995, vol. 38, pp. 1057–1060.

    Article  CAS  PubMed  Google Scholar 

  9. Murphy, R.W., Darevsky, I.S., MacCulloch, R.D., et al., Old age, multiple formations or genetic plasticity? Clonal diversity in the uniparental Caucasian rock lizard Lacerta dahli, Genetica, 1997, vol. 101, pp. 125–130.

    Article  CAS  PubMed  Google Scholar 

  10. Fu, J., MacCulloch, R.D., Murphy, R.W., and Darevsky, I.S., Divergence of the cytohrome b gene in the Lacerta raddei complex and its parthenogenetic daughter species: evidence for recent multiple origins, Copeia, 2000, vol. 2, pp. 432–440.

    Article  Google Scholar 

  11. Korchagin, V.I., Badaeva, T.N., Tokarskaya, O.N., et al., Molecular characterization of allelic variants of (GATA)n microsatellite loci in parthenogenetic lizards Darevskia unisexualis (Lacertidae), Gene, 2007, vol. 392, pp. 126–133. doi 10.1016/j.gene.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  12. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729. doi 10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takezaki, N. and Nei, M., Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA, Genetics, 1996, vol. 144, no. 1, pp. 389–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Weir, B.S., Genetic Data Analysis, Sunderland, MA: Sinauer Associates, 1990.

    Google Scholar 

  15. Ryskov, A.P., Genetically unstable microsatellite-containing loci and genome diversity in clonally reproduced unisexual vertebrates, Int. Rev. Cell Mol. Biol., 2008, vol. 270, pp. 319–349. doi 10.1016/S1937-6448(08)01407-X

    Article  CAS  PubMed  Google Scholar 

  16. Vergun, A.A., Martirosyan, I.A., Semyenova, S.K., et al., Clonal diversity and clone formation in the parthenogenetic Caucasian rock lizard Darevskia dahli, PLoS One, 2014, vol. 9, no. 3. e91674. doi 10.1371/journal. pone.0091674

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moritz, C., Brown, W.M., Densmore, L.D., et al., Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae), Bull. N.Y. State Mus., 1989, vol. 466, pp. 87–112.

    Google Scholar 

  18. Moritz, C., Wright, J.W., and Brown, C.M., Mitochondrial DNA analysis and the origin and relative age of parthenogenetic Cnemidophorus: phylogenetic constraints on hybrid origins, Evolution, 1992, vol. 46, pp. 184–192.

    Article  CAS  Google Scholar 

  19. Strand, M., Prolla, T.A., Liskay, R.M., and Petes, T.D., Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair, Nature, 1993, vol. 365, pp. 274–276.

    Article  CAS  PubMed  Google Scholar 

  20. Pearson, C.E. and Sinden, R.R., Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci, Biochemistry, 1996, vol. 35, pp. 5041–5053.

    Article  CAS  PubMed  Google Scholar 

  21. Schlötterer, C. and Tautz, D., Slippage synthesis of simple sequence DNA, Nucleic Acids Res., 1992, vol. 20, pp. 211–215.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weber, J.L. and Wong, C., Mutation of human short tandem repeats, Hum. Mol. Genet., 1993, vol. 2, pp. 1123–1128.

    Article  CAS  PubMed  Google Scholar 

  23. Wells, R.D., Molecular basis of genetic instability of triplet repeats, J. Biol. Chem., 1996, vol. 271, no. 6, pp. 2875–2878.

    Article  CAS  PubMed  Google Scholar 

  24. Ohta, T. and Kimura, M., The model of mutation appropriate to calculate the number of electrophoretically detectable alleles in a genetic population, Genet. Res., 1973, vol. 22, pp. 201–204.

    Article  CAS  PubMed  Google Scholar 

  25. Di Rienzo, A., Peterson, A.C., Garza, J.C., et al., Mutational processes of simple sequence repeat loci in human populations, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 3166–3170.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Badaeva, T.N., Malysheva, D.N., Korchagin, V.I., and Ryskov, A.P., Genetic variation and de novo mutations in the parthenogenetic Caucasian rock lizard Darevskia unisexualis, PLoS One, 2008, vol. 3, no. 7. e2730. doi 10.1371/journal.pone.0002730

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hua, L., Mao, L.-X., Chen, C., et al., Isolation and characterization of microsatellite loci in the Reevese’s butterfly lizard Leiolepis reevesii (Agamidae), Conserv. Genetics, 2012, vol. 4, no. 3, pp. 791–794.

    Article  Google Scholar 

  28. Hanna, N., Brown, D., Avilaet, L.J., et al., Characterization of 10 polymorphic microsatellite loci in the South American lizard Liolaemus fitzingerii with crossamplification in L. chehuachekenk, Conserv. Genetics, 2012, vol. 4, no. 1, pp. 105–107.

    Article  Google Scholar 

  29. Wogan, G.O.U., Kapelke, J., Feldheimc, K.A., et al., Isolation and characterization of nine tetranucleoide microsatellite loci for the secretive limbless lizards of the genus Anniella (Anguidae), Biochem. Syst. Ecol., 2015, vol. 62, pp. 155–158. doi 10.1016/j.bse.2015.07.039

    Article  CAS  Google Scholar 

  30. Omelchenko, A.V., Girnyk, A.E., Osipov, F.A., et al., Detection of genotypic changes in the parthenogenetic lizards of Darevskia armeniaca (Mehely) introduced from Armenia to Ukraine, Ross. Zh. Biol. Invazii, 2016, no. 2, pp. 102–115.

    Google Scholar 

  31. Dotsenko, I.B., The state of experimental population of the Caucasian rock lizards (Darevskia) in the Zhytomyr oblast of Ukraine, Nauk. Visn. Uzhgorod. Univ., Ser. Biol., 2007, no. 21, pp. 14–19.

    Google Scholar 

  32. Yue, G.H., Beeckmann, R., and Geldermann, H., Mutation rate at swine microsatellite loci, Genetica, 2002, vol. 114, pp. 113–119.

    Article  CAS  PubMed  Google Scholar 

  33. Yue, G.H., David, L., and Orban, L., Mutation rate and pattern of microsatellites in common carp (Cyprinus carpio L.), Genetica, 2007, vol. 129, pp. 329–331.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Girnyk.

Additional information

Original Russian Text © A.E. Girnyk, A.A. Vergun, A.V. Omelchenko, V.G. Petrosyan, V.I. Korchagin, A.P. Ryskov, 2017, published in Genetika, 2017, Vol. 53, No. 4, pp. 468–479.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girnyk, A.E., Vergun, A.A., Omelchenko, A.V. et al. Molecular and genetic characterization of the allelic variants of Du215, Du281, Du323, and Du47G microsatellite loci in parthenogenetic lizard Darevskia armeniaca (Lacertidae). Russ J Genet 53, 472–482 (2017). https://doi.org/10.1134/S1022795417040068

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417040068

Keywords

Navigation