Skip to main content
Log in

Expression of the DNA methyltransferase genes in silver foxes experimentally selected for domestication

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Animal domestication is a model of a rapid evolutionary process. In experimental fox domestication, the time required for the emergence and fixation of specific evolutionary changes was reduced from thousands to tens of years, compared to historical domestication. Tame foxes were obtained by extreme selective breeding for emotionally positive response toward humans. Unselected foxes, as well as foxes bred for enhanced aggressiveness to humans were used as control. Epigenetic regulation of gene expression is considered as one of the possible mechanisms of rapid evolution. In this study, expression of DNA methyltransferase genes, DNMT1 and DNMT3A, was investigated. It was demonstrated that, in tame foxes, the level of DNMT3A gene expression in the prefrontal cortex, hippocampus, and spleen was increased by more than 2 times in comparison with aggressive and unselected foxes. At the same time, the DNMT1 expression level did not differ among the studied groups of animals. A possible reason for the differences found in the DNMT3A expression could be the changes in the level and metabolism of methionine, which serves as a donor of methyl groups during DNA methylation. However, this study showed that there were no differences in the serum methionine levels between tame, unselected, and aggressive foxes. Thus, the data support the hypothesis that selection for positive emotional response toward humans affected the DNA methylation machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belyaev, D.K., Domestication of animals, Sci. J., 1969, vol. 5, pp. 47–52.

    Google Scholar 

  2. Belyaev, D.K., Destabilizing selection as a factor of domestication, in Genetika i blagosostoyanie chelovechestva (Genetics and the Welfare of Humankind), Moscow: Nauka, 1981, pp. 53–66.

    Google Scholar 

  3. Trut, L.N., Plyusnina, I.Z., and Oskina, I.N., An experiment on fox domestication and debatable issues of evolution of the dog, Russ. J. Genet., 2004, vol. 40, no. 6, pp. 644–655.

    Article  CAS  Google Scholar 

  4. Trut, L.N., Herbek, Yu.E., Kharlamova, A.V., et al., Fox domestication: molecular mechanisms involved in selection for behavior, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, no. 2, pp. 226–233.

    Google Scholar 

  5. Trut, L., Oskina, I., and Kharlamova, A., Animal evolution during domestication: the domesticated fox as a model, BioEssays, 2009, vol. 31, no. 3, pp. 349–360. doi 10.1002/bies.200800070

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oskina, I.N., Herbek, Yu.E., Shikhevich, S.G., et al., Changing in the hypothalamic-pituitary-adrenal axis and immune systems during the selection of animals for domestication behavior, Inf. Vestn. Vavilovskogo O-va Genet. Sel., 2008, vol. 12, nos. 1–2, pp. 39–49.

    Google Scholar 

  7. Vaido, A.I., Dyuzhikova, N.A., Shiryaeva, N.V., et al., Systemic control of the molecular, cell, and epigenetic mechanisms of long-lasting consequences of stress, Russ. J. Genet., 2009, vol. 45, no. 3, pp. 298–303.

    Article  Google Scholar 

  8. Dulac, C., Brain function and chromatin plasticity, Nature, 2010, vol. 465, pp. 728–735. doi 10.1038/nature09231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Turecki, G. and Meaney, M.J., Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review, Biol. Psychiat., 2016, vol. 79, no. 2, pp. 87–96. doi 10.1016/j.biopsych. 2014.11.022

    Article  CAS  PubMed  Google Scholar 

  10. Weaver, I.C.G., Cervoni, N., Champagne, F.A., et al., Epigenetic programming by maternal behavior, Nat. Neurosci., 2004, vol. 7, no. 8, pp. 847–854. doi 10.1038/nn1276

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, T.Y., Labonté, B., Wen, X.L., et al., Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans, Neuropsychopharmacology, 2013, vol. 38, no. 1, pp. 111–123. doi 10.1038/npp.2012. 149

    Article  PubMed  Google Scholar 

  12. Wang, D., Szyf, M., Benkelfat, C., et al., Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression, PLoS One, 2012, vol. 7, no. 6. e39501. doi 10.1371/journal.pone.0039501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller, C.A. and Sweatt, J.D., Covalent modification of DNA regulates memory formation, Neuron, 2007, vol. 53, no. 6, pp. 857–869. doi 10.1016/j.neuron.2007.02.022

    Article  CAS  PubMed  Google Scholar 

  14. Gräff, J. and Mansuy, I.M., Epigenetic codes in cognition and behaviour, Behav. Brain. Res., 2008, vol. 192, no. 1, pp. 70–87. doi 10.1016/j.bbr.2008.01.021

    Article  PubMed  Google Scholar 

  15. McGowan, P.O., Sasaki, A., D’Alessio, A.C., et al., Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse, Nat. Neurosci., 2009, vol. 12, no. 3, pp. 342–348. doi 10.1038/nn.2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jakovcevski, M. and Akbarian, S., Epigenetic mechanisms in neurological disease, Nat. Med., 2012, vol. 18, no. 8, pp. 1194–1204. doi 10.1038/nm.2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grayson, D.R. and Guidotti, A., The dynamics of DNA methylation in schizophrenia and related psychiatric disorders, Neuropsychopharmacology, 2013, vol. 38, no. 1, pp. 138–166. doi doi 10.1038/npp.2012.125

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, T.Y., Hellstrom, I.C., Bagot, R.C., et al., Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus, J. Neurosci., 2010, vol. 30, no. 39, pp. 13130–13137. doi 10.1523/JNEUROSCI.1039-10.2010

    Article  CAS  PubMed  Google Scholar 

  19. Nätt, D., Rubin, C.J., Wright, D., et al., Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens, BMC Genomics, 2012, vol. 13, p. 59. doi 10.1186/1471-2164-13-59

    Article  PubMed  PubMed Central  Google Scholar 

  20. LaPlant, Q., Vialou, V., Iii, H.E.C., et al., Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens, Nat. Neurosci., 2010, vol. 13, no. 9, pp. 1137–1143. doi 10.1038/nn.2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anier, K., Malinovskaja, K., Pruus, K., et al., Maternal separation is associated with DNA methylation and behavioural changes in adult rats, Eur. Neuropsychopharmacol., 2014, vol. 24, no. 3, pp. 459–468. doi 10.1016/j.euroneuro.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  22. Jablonka, E. and Raz, G., Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution, Q. Rev. Biol., 2009, vol. 84, no. 2, pp. 131–176. doi 10.1086/598822

    Article  PubMed  Google Scholar 

  23. Danchin, É., Charmantier, A., Champagne, F.A., et al., Beyond DNA: integrating inclusive inheritance into an extended theory of evolution, Nat. Rev. Genet., 2011, vol. 12, no. 7, pp. 475–486. doi 10.1038/nrg3028

    Article  CAS  PubMed  Google Scholar 

  24. Ledón-Rettig, C.C., Richards, C.L., and Martin, L.B., Epigenetics for behavioral ecologists, Behav. Ecol., 2013, vol. 24, no. 2, pp. 311–324. doi 10.1093/beheco/ ars145

    Article  Google Scholar 

  25. Danchin, É. and Pocheville, A., Inheritance is where physiology meets evolution, J. Physiol., 2014, vol. 592, no. 11, pp. 2307–2317. doi 10.1113/jphysiol.2014. 272096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Belyaev, D.K., Destabilizing selection as a factor in variation of animals under domestication, Priroda (Moscow, Russ. Fed.) 1979, no. 2, pp. 36–45.

    Google Scholar 

  27. Gerbek, Yu.E., Os’kina, I.N., Gulevich, R.G., and Plyusnina, I.Z., Effects of maternal methyl-supplement diet on hippocampal glucocorticoid receptor mRNA expression in rats selected for behavior, Cytol. Genet., 2010, vol. 44, no. 2, pp. 108–113. doi 10.3103/S0095452710020064

    Article  Google Scholar 

  28. Belyaev, D.K., Ruvinskii, A.O., and Trut, L.N., The value of the inherited activation and inactivation of genes in animal domestication, Genetica (Moscow), 1979, vol. 15, no. 11, pp. 2033–2055.

    Google Scholar 

  29. Plyusnina, I. and Oskina, I., Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans, Physiol. Behav., 1997, vol. 61, no. 3, pp. 381–385. doi 10.1016/ S0031-9384(96)00445-3

    Article  CAS  PubMed  Google Scholar 

  30. Plyusnina, I.Z., Oskina, I.N., Tibeikina, M.A., and Popova, N.K., Cross-fostering effects on weight, exploratory activity, acoustic startle reflex and corticosterone stress response in Norway gray rats selected for elimination and for enhancement of aggressiveness towards human, Behav. Genet., 2009, vol. 39, no. 2, pp. 202–212. doi 10.1007/s10519-008-9248-6

    Article  PubMed  Google Scholar 

  31. Albert, F.W., Shchepina, O., Winter, C., et al., Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans, Horm. Behav., 2008, vol. 53, no. 3, pp. 413–421. doi 10.1016/j.yhbeh.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  32. Tremolizzo, L., Carboni, G., Ruzicka, W.B., et al., An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 26, pp. 17095–17100. doi 10.1073/pnas.262658999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carlin, J., George, R., and Reyes, T.M., Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology, PLoS One, 2013, vol. 8, no. 5. e63549. doi 10.1371/journal.pone. 0063549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giudicelli, F., Brabant, A.-L., Grit, I., et al., Excess of methyl donor in the perinatal period reduces postnatal leptin secretion in rat and interacts with the effect of protein content in diet, PLoS One, 2013, vol. 8, no. 7. e68268. doi 10.1371/journal.pone.0068268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ishii, D., Matsuzawa, D., Matsuda, S., et al., Methyl donor-deficient diet during development can affect fear and anxiety in adulthood in C57BL/6J mice, PLoS One, 2014, vol. 9, no. 8. e105750. doi 10.1371/journal. pone.0105750

    Article  PubMed  PubMed Central  Google Scholar 

  36. McGowan, P.O., Meaney, M.J., and Szyf, M., Diet and the epigenetic (re)programming of phenotypic differences in behavior, Brain Res., 2008, no. 1237, pp. 12–24. doi 10.1016/j.brainres.2008.07.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prasolova, L.A., Os’kina, I.N., Plyusnina, I.Z., and Trut, L.N., Maternal methyl supplements affect the phenotypic variation of the agouti gene in the offspring of rats with different behavioral types, Russ. J. Genet., 2009, vol. 45, no. 5, pp. 587–592.

    Article  CAS  Google Scholar 

  38. Huang, S., Slomianka, L., Farmer, A.J., et al., Selection for tameness, a key behavioral trait of domestication, increases adult hippocampal neurogenesis in foxes, Hippocampus, 2015, vol. 25, no. 8, pp. 963–975. doi 10.1002/hipo.22420

    Article  CAS  PubMed  Google Scholar 

  39. Ye, J., Coulouris, G., Zaretskaya, I., et al., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinformatics, 2012, vol. 13, p. 134. doi 10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kukekova, A.V., Johnson, J.L., Teiling, C., et al., Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes), BMC Genomics, 2011, vol. 12, p. 482. doi 10.1186/1471-2164-12-482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwarz, E.L., Roberts, W.L., and Pasquali, M., Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection, Clin. Chim. Acta, 2005, vol. 354, nos. 1–2, pp. 83–90. doi 10.1016/j.cccn. 2004.11.016

    Article  CAS  PubMed  Google Scholar 

  42. Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., et al., Structure and function of the blood–brain barrier, Neurobiol. Dis., 2010, vol. 37, no. 1, pp. 13–25. doi 10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  43. Guo, J.U., Su, Y., Shin, J.H., et al., Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain, Nat. Neurosci., 2014, vol. 17, no. 2, pp. 215–222. doi 10.1038/nn.3607

    Article  CAS  PubMed  Google Scholar 

  44. Oliveira, A.M.M., Hemstedt, T.J., and Bading, H., Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities, Nat. Neurosci., 2012, vol. 15, no. 8, pp. 1111–1113. doi 10.1038/nn.3151

    Article  CAS  PubMed  Google Scholar 

  45. Chen, B.-F. and Chan, W.-Y., The de novo DNA methyltransferase DNMT3A in development and cancer, Epigenetics, 2014, vol. 9, no. 5, pp. 669–677. doi 10.4161/epi.28324

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hunter, R.G. and McEwen, B.S., Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation, Epigenomics, 2013, vol. 5, no. 2, pp. 177–194.

    Article  CAS  PubMed  Google Scholar 

  47. Morris, M.J., Adachi, M., Na, E.S., and Monteggia, L.M., Selective role for DNMT3a in learning and memory, Neurobiol. Learn. Mem., 2014, vol. 115, pp. 30–37. doi 10.1016/j.nlm.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen, S., Meletis, K., Fu, D., et al., Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan, Dev. Dyn., 2007, vol. 236, no. 6, pp. 1663–1676. doi 10.1002/dvdy.21176

    Article  CAS  PubMed  Google Scholar 

  49. Vanyushin, B.F. and Romanenko, E.B., The change of rat DNA methylation in ontogenesis and under the influence of hydrocortisone, Biokhimiya (Moscow), 1979, vol. 44, no. 1, pp. 78–85.

    CAS  Google Scholar 

  50. Elliott, E., Manashirov, S., Zwang, R., et al., Dnmt3a in the medial prefrontal cortex regulates anxiety-like behavior in adult mice, J. Neurosci., 2016, vol. 36, no. 3, pp. 730–740. doi 10.1523/JNEUROSCI.0971- 15.2016

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, Q., Wang, L., Zhang, Y., et al., Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy, J. Mol. Neurosci., 2012, vol. 46, no. 2, pp. 420–426. doi 10.1007/s12031-011-9602-7

    Article  CAS  PubMed  Google Scholar 

  52. Kolpakov, V.G., Barykina, N.N., Alekhina, T.A., and Ponomarev, I.Y., Some Genetic Animal Models for Comparative Psychology and Biological Psychiatry, Novosibirsk: Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 1996.

    Google Scholar 

  53. Belyaev, D.K., Genetics, society, personality, in Problemy genetiki i teorii evolyutsii (Challenges in Genetics and Evolutionary Theory), Novosibirsk: Nauka, 1991, pp. 43–51.

    Google Scholar 

  54. Wrangham, R. and Pilbeam, D., African apes as time machines, in All Apes Great and Small, vol. 1: African Apes, New York: Kluwer, 2001, pp. 5–17.

    Google Scholar 

  55. Allis, D., Jenuwein, T., and Reinberg, D., Overview and concepts, in Epigenetics, Allis, D., Jenuwein, T., Reinberg, D., and Caparros, M.L., Eds., Cold Spring Harbor: Cold Spring Harbor Laboratory, 2007.

    Google Scholar 

  56. Di Ruscio, A., Ebralidze, A.K., Benoukraf, T., et al., DNMT1-Interacting RNAs block gene-specific DNA methylation, Nature, 2013, vol. 503, pp. 371–376. doi doi 10.1038/nature12598

    Article  PubMed  PubMed Central  Google Scholar 

  57. Marchal, C. and Miotto, B., Emerging concept in DNA methylation: role of transcription factors in shaping DNA methylation patterns, J. Cell. Physiol., 2015, vol. 230, no. 4, pp. 743–751. doi 10.1002/jcp.24836

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Herbeck.

Additional information

Original Russian Text © Yu.E. Herbeck, A.R. Khantemirova, E.V. Antonov, N.I. Goncharova, R.G. Gulevich, D.V. Shepeleva, L.N. Trut, 2017, published in Genetika, 2017, Vol. 53, No. 4, pp. 480–487.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbeck, Y.E., Khantemirova, A.R., Antonov, E.V. et al. Expression of the DNA methyltransferase genes in silver foxes experimentally selected for domestication. Russ J Genet 53, 483–489 (2017). https://doi.org/10.1134/S1022795417040056

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417040056

Keywords

Navigation