Skip to main content
Log in

Polymorphic sites in transcribed spacers of 35S rRNA genes as an indicator of origin of the Paeonia cultivars

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Region ITS1–5.8S rDNA–ITS2 is sequenced in 27 varieties of cultivated ornamental peonies, ten of which presumably originate from Paeonia lactiflora, one from P. officinalis, 13 from hybridization of P. lactiflora and P. peregrina, or P. officinalis, and three are Itoh hybrids. Comparative analysis of distribution patterns of polymorphic sites (PS) for the obtained DNA sequences and data from GenBank is carried out. Hypotheses of origin of the studied varieties, except for two, which, as previously assumed, originate from hybridization of P. lactiflora and P. peregrina, are confirmed. It is shown that the sequence ITS1–5.8S rDNA–ITS2 is a good genetic marker for cultivars of the P. lactiflora group and Itoh hybrids, and that the PS distribution patterns in these sequences can provide valuable information on the kinship and origin of individual varieties. However, insufficient knowledge of wild species from the P. officinalis kinship group limits the use of this marker in the study of varieties obtained through interspecific hybridization within the Paeonia section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jakubowski, R., Hollingsworth, D., Nordick, J., et al., Peonies 1997–2007, Gladston: American Peony Society MO, 2007.

    Google Scholar 

  2. Vakblad voor de Bloemisterji, 2012. De meest complete international vakbeurs voor de snijbloemen en bioeiende pot planten! 2012. http://www.vakbladvoordebloemisterij.nl!home/artikelen/6428/aanvullingen-bijnummer-23-20 I 0.

  3. Zhu, S., Yu, X., Wu, Y., et al., Genetic and chemical characterization of white and red peony root derived from Paeonia lactiflora, J. Nat. Med., 2015, vol. 69, pp. 35–45. doi 10.1007/s11418-014-0857-5

    Article  CAS  PubMed  Google Scholar 

  4. Gilmore, B., Bassil, N., Nyberg, A., et al., Microsatellite marker development in peony using next generation sequencing, J. Am. Soc. Hortic. Sci., 2013, vol. 138, no. 1, pp. 64–74.

    CAS  Google Scholar 

  5. Punina, E.O., Machs, E.M., Krapivskaya, E.E., et al., Interspecific hybridization in the genus Paeonia (Paeoniaceae): polymorphic sites in transcribed spacers of the 45S rRNA genes as indicators of natural and artificial peony hybrids, Russ. J. Genet., 2012, vol. 48, no. 7, pp. 684–696. doi 10.1134/S1022795412070113

    Article  CAS  Google Scholar 

  6. Kotseruba, V., Gernand, D., Meister, A., and Houben, A., Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8), Genome, 2003, vol. 46, pp. 156–163.

    Article  CAS  PubMed  Google Scholar 

  7. Rodionov, A.V., Tyupa, N.B., Kim, E.S., et al., Genomic configuration of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of its1 and its2 sequences: on the oat karyotype evolution during the early events of the Avena species divergence, Russ. J. Genet., 2005, vol. 41, no. 5, pp. 518–528.

    Article  CAS  Google Scholar 

  8. Rodionov, A.V., Nosov, N.N., Kim, E.S., et al., The origin of polyploid genomes of bluegrasses Poa L. and gene flow between northern Pacific and sub-Antarctic Islands, Russ. J. Genet., 2010, vol. 46. no. 12, pp. 1407–1417.

    Article  CAS  Google Scholar 

  9. Kovarik, A., Dadejova, M., Lim, Y.K., et al., Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics, Ann. Bot., 2008, vol. 101, pp. 815–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malinska, H., Tate, J.A., Matyasek, R., et al., Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids, BMC Evol. Biol., 2010, vol. 10, pp. 291–308.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sang, T., Crawford, D.J., and Stuessy, T.F., Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 6813–6817. doi 10.1073/pnas.92.15.6813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hong, D.-Yu. and Zhou, Sh.-L., Paeonia (Paeoniaceae) in the Caucasus, Bot. J. Linn. Soc., 2003, vol. 43, no. 2, pp. 135–150.

    Article  Google Scholar 

  13. Uspenskaya, M.S., Piony (Peonies), Moscow: Fiton+, 2003.

    Google Scholar 

  14. Punina, E.O. and Mordak, E.V., Synopsis of the Caucasian species of the genus Paeonia (Paeoniaceae), Bot. Zh., 2009, vol. 94, no. 11, pp. 1681–1696.

    Google Scholar 

  15. Punina, E.O. and Mordak, E.V., Ordo 11: Paeoniales, in Konspekt flory Kavkaza (Synopsis of the Caucasian Flora), St. Petersburg: KMK, 2002, vol. 3, no. 2, pp. 126–136.

    Google Scholar 

  16. Burkhardt, C., Carsten Burkhardt’s WEB Project Paeonia, 2002. http://www.paeon.de/

  17. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, p. 11.

    Google Scholar 

  18. Ridgway, K.P., Duck, J.M., and Young, J.P.W., Identification of roots from grass swards using PCR-RFLP and FFLP of the plastid trnL (UAA) intron, BMC Ecol., 2003, vol. 3, pp. 3–8.

    Article  Google Scholar 

  19. White, T.J., Bruns, T., Lee, S., and Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., Eds., San Diego, 1990, pp. 315–322.

    Google Scholar 

  20. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai, Y., Li, S., Liu, Y., et al., Molecular phylogeny of Ranunculaceae based on internal transcribed spacer sequences, Afr. J. Biotechnol., 2009, vol. 8, no. 20, pp. 5215–5224. doi 10.5897/AJB09.938

    CAS  Google Scholar 

  22. Sun, Y.-L. and Hong, S.-K., Phylogenetic relationship and evolution analysis of the peony Paeonia species using multi-locus deoxyribonucleic acid (DNA) barcodes, J. Med. Plants Res., 2011, vol. 6, no. 37, pp. 5048–5058. doi 10.5897/JMPR11.1733

    Google Scholar 

  23. Wang, Q., Xiao, P., Luo, K., et al., Genetic and component content differentiation between wild and cultivated populations of Paeonia lactiflora and related species used as Chishao and Baishao in China, Biol. Pharm. Bull., 2014, vol. 37, no. 9, pp. 1516–1524.

    Article  CAS  PubMed  Google Scholar 

  24. Cullen, J. and Heywood, V.H., Paeonia revised by J.R. Akeroyd, Flora Europaea, Tutin, T.G., Eds., London: Cambridge Univ. Press, 1995, vol. 1, 2nd ed.

  25. Halda, J.J. and Waddick, J.W., The Genus Paeonia, Portland: Timber, 2004.

    Google Scholar 

  26. Ferguson, D. and Sang, T., Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia), Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 7, pp. 3915–3919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Punina, E.O., A new species of peony for the flora of the Caucasus and Russia, Paeonia officinalis (Paeoniaceae) and its karyosystematic study, Bot. Zh., 2005, vol. 90, no. 3, pp. 332–339.

    Google Scholar 

  28. Saunders, A.P. and Stebbins, G.L., Cytogenetic studies in Paeonia: 1. The compatibility of the species and the appearance of the hybrids, Genetics, 1938, vol. 23. no. 1, pp. 65–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stern, F.C., A Study of Genus Paeonia, London, 1946.

    Google Scholar 

  30. Badaeva, E.D., Shelukhina, O.Y., Goryunova, S.V., et al., Phylogenetic relationships of tetraploid ABgenome Avena species evaluated by means of cytogenetic (C-banding and FISH) and RAPD analyses, J. Bot., 2010, vol. 2010, pp. 1–13, article ID742307.

    Article  Google Scholar 

  31. Roa, F. and Guerra, M., Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications, BMC Evol. Biol., 2012, vol. 12, p. 225. doi 10.1186/1471-2148-12-225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perry, R.P., Cheng, T.-Y., Freed, J.J., et al., Evolution of the transcription unit of ribosomal RNA, Proc. Natl. Acad. Sci. U.S.A., 1970, vol. 65, pp. 609–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cecchini, J.P. and Miassod, R., Ribosomal cistrons in higher plant cells: 1. A definitive scheme for the maturation pathway of the primary transcriptional product of ribosomal cistrons in Acer pseudoplatanus L. cells, Biochim. Biophys. Acta, 1976, vol. 418, pp. 104–116.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia, S., Galvez, F., Gras, A., et al., Plant rDNA database: update and new features, Database, 2014, vol. 2014, article IDbau 063. doi 10.1093/database/bau063

    Article  Google Scholar 

  35. Rodionov, A.V., Gnutikov, A.A., Kotsinyan, A.R., et al., ITS1–5.8S rDNA–ITS2 sequence in the 35S rRNA genes as a marker in the reconstruction of cereal (Poaceae) phylogeny, Usp. Sovrem. Biol., 2016, vol. 136, no. 5, pp. 416–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Punina.

Additional information

Original Russian Text © E.O. Punina, E.M. Machs, E.E. Krapivskaya, A.V. Rodionov, 2017, published in Genetika, 2017, Vol. 53, No. 2, pp. 181–191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punina, E.O., Machs, E.M., Krapivskaya, E.E. et al. Polymorphic sites in transcribed spacers of 35S rRNA genes as an indicator of origin of the Paeonia cultivars. Russ J Genet 53, 202–212 (2017). https://doi.org/10.1134/S1022795417010112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417010112

Keywords

Navigation