Advertisement

Russian Journal of Genetics

, Volume 53, Issue 1, pp 139–146 | Cite as

Association study of genetic markers of schizophrenia and its cognitive endophenotypes

  • A. V. BocharovaEmail author
  • V. A. Stepanov
  • A. V. Marusin
  • V. N. Kharkov
  • K. V. Vagaitseva
  • O. Yu. Fedorenko
  • N. A. Bokhan
  • A. V. Semke
  • S. A. Ivanova
Human Genetics

Abstract

A replicative analysis of associations of 15 SNPs located in the regions of 11 genes (TCF4, VRK2, NOTCH4, ZNF804A, AGBL1, RELN, ZFP64P1, KCNB2, CSMD1, CPVL, NRIP1) and three intergenic regions (SLCO6A1/LINCOO491, LOC105376248/LOC105376249, SPA17/NRGN) with schizophrenia was conducted in the Russian population of the Siberian region. These SNPs were previously identified in genome-wide association studies (GWAS) of schizophrenia and cognitive abnormalities. The present study confirmed associations of KCNB2 rs2247572, CSMD1 rs2616984, and intergenic rs12807809 located in SPA17/NRGN with schizophrenia. It was established that the frequency of the CSMD1 rs2616984 G/G genotype was higher in patients compared to the control group (OR = 1.73; CI: 1.14–2.62; р = 0.0337). The frequencies of the KCNB2 rs2247572 TT genotype (OR = 0.41; CI: 0.20–0.87; р = 0.0485) and intergenic rs12807809 CT genotype located in SPA17/NRGN (OR = 0.70; CI: 0.53–0.94; р = 0.0464) were significantly decreased in patients compared to the control group.

Keywords

schizophrenia cognitive endophenotypes association study multifactorial diseases Russian population 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    http://www.ncbi.nlm.nih.gov/pubmed.Google Scholar
  2. 2.
    Mosolov, S.N., Some current theoretical problems of diagnostics, classification, neurobiology and treatment of schizophrenia: a comparison of foreign and domestic approaches, Korsakov J. Neurol. Psychiatry, 2010, vol. 6, pp. 4–11.Google Scholar
  3. 3.
    The World Health Report 2001—Mental Health: New Understanding, New Hope. http://www.who.int/whr/2001/en/.Google Scholar
  4. 4.
    Stefansson, H., Ophof, R.A., Steinberg, S., et al., Common variants conferring risk of schizophrenia, Nature, 2009, vol. 460, no. 7256, pp. 744–747.PubMedPubMedCentralGoogle Scholar
  5. 5.
    McCarthy, S.M., McCombie, W.R., and Corvin, A., Unlocking the treasure trove: from genes to schizophrenia biology, Schizophr. Bull., 2014, vol. 40, no. 3, pp. 492–496.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    http://www.ebi.ac.uk/gwas.Google Scholar
  7. 7.
    Golimbet, V.E., Korovaitseva, G.I., Brusov, O.S., et al., The functional state of the serotonergic system and the 5-HTTLPR polymorphism of the serotonin transporter gene in patients with schizophrenia, Mol. Biol. (Moscow), 2010, vol. 44, no. 2, pp. 223–227.CrossRefGoogle Scholar
  8. 8.
    Gareeva, A.E., Traks, T., Koks, S., and Khusnutdinova, E.K., The role of neurotrophins and neurexins genes in the risk of paranoid schizophrenia in Russians and Tatars, Russ. J. Genet., 2015, vol. 51, no. 7, pp. 683–694.CrossRefGoogle Scholar
  9. 9.
    Alfimova, M.V., Abramova, L.I., Aksenova, E.V., et al., Association between polymorphism of the neuregulin gene (NRG1) and cognitive functions in schizophrenia patients and healthy subjects, Korsakov J. Neurol. Psychiatry, 2011, no. 6, pp. 53–57.Google Scholar
  10. 10.
    Fedorenko, O.Yu., Rudikov, E.V., Gavrilova, V.A., et al., Association of (N251S)-PIP5K2A with schizophrenic disorders: a study of the Russian population of Siberia, Korsakov J. Neurol. Psychiatry, 2013, vol. 113, no. 5, pp. 58–61.Google Scholar
  11. 11.
    Stepanov, V.A., Bocharova, A.V., Saduakasova, K.Z., et al., Replicative study of susceptibility to childhoodonset schizophrenia in Kazakhs, Russ. J. Genet., 2015, vol. 51, no. 2, pp. 185–192.CrossRefGoogle Scholar
  12. 12.
    Purcell, S.M., Wray, N.R., Stone, J.L., et al., Common polygenic variation contributes to risk of schizophrenia and bipolar disorder, Nature, 2009, vol. 460, no. 7256, pp. 748–752.PubMedGoogle Scholar
  13. 13.
    Shifman, S., Johannesson, M., Bronstein, M., et al., Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women, PLoS Genet., 2008, vol. 4, no. 2. e28CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cirulli, E.T., Kasperaviciute, D., Attix, D.K., et al., Common genetic variation and performance on standardized cognitive tests, Eur. J. Hum. Genet., 2010, vol. 18, no. 7, pp. 815–820.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Need, A.C., Attix, D.K., McEvoy, J.M., et al., A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB, Hum. Mol. Genet., 2009, vol. 18, no. 23, pp. 4650–4661.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    O’Donovan, M.C., Craddock, N., Norton, N., et al., Identification of loci associated with schizophrenia by genome-wide association and follow-up, Nat. Genet., 2008, vol. 40, no. 9, pp. 1053–1055.CrossRefPubMedGoogle Scholar
  17. 17.
    Sullivan, P.F., Lin, D., Tzeng, J.Y., et al., Genomewide association for schizophrenia in the CATIE study: results of stage 1, Mol. Psychiatry, 2008, vol. 13, no. 6, pp. 570–584.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weir, B.S., Genetic Data Analysis: Method for Discrete Population Genetic Data, Sunderland: Sinauer Associates, 1990.Google Scholar
  19. 19.
    Luykx, J.J., Bakker, S.C., Lentjes, E., et al., Genomewide association study of monoamine metabolite levels in human cerebrospinal fluid, Mol. Psychiatry, 2014, vol. 19, no. 2, pp. 228–234.CrossRefPubMedGoogle Scholar
  20. 20.
    Sherva, R., Tripodis, Y., Bennett, D.A., et al., Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease, AlzheimersDement., 2014, vol. 10, pp. 45–52.Google Scholar
  21. 21.
    Xu, W., Cohen-Woods, S., Chen, Q., et al., Genomewide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1, BMC Med. Genet., 2014, vol. 15, no. 2. doi 10.1186/1471-2350-15-2Google Scholar
  22. 22.
    Rose, E.J., Morris, D.W., Hargreaves, A., et al., Neural effects of the CSMD1 genome-wide associated schizophrenia risk variant rs10503253, Am. J. Med. Genet._Part B, 2013, vol. 162, no. 6, pp. 530–537.CrossRefGoogle Scholar
  23. 23.
    Koiliari, E., Roussos, P., Pasparakis, E., et al., The CSMD1 genome-wide associated schizophrenia risk variant rs10503253 affects general cognitive ability and executive function in healthy males, Schizophr. Res., 2014, vol. 154, nos. 1–3, pp. 42–47. doi 10.1016/j.schres.2014.02.017CrossRefPubMedGoogle Scholar
  24. 24.
    Steen, V.M., Nepal, C., Ersland, K.M., et al., Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1, PLoS One, 2013, vol. 8, no. 11. e79501. doi 10.1371/journal.pone. 0079501CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Håvik, B., Le Hellard, S., Rietschel, M., et al., The complement control-related genes CSMD1 and CSMD2 associate to schizophrenia, Biol. Psychiatry, 2011, vol. 70, no. 1, pp. 35–42. doi 10.1016/j.biopsych. 2011.01.030CrossRefPubMedGoogle Scholar
  26. 26.
    Shcherbakova, I.V., Activation of innate immunity in schizophrenia, Korsakov J. Neurol. Psychiatry, 2006, vol. 10, pp. 79–82.Google Scholar
  27. 27.
    Kraus, D.M., Elliott, G.S., Chute, H., et al., CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues, J. Immunol., 2006, vol. 176, pp. 4419–4430.CrossRefPubMedGoogle Scholar
  28. 28.
    Gendrel, M., Rapti, G., Richmond, J.E., et al., A secreted complement control-related protein ensures acetylcholine receptor clustering, Nature, 2009, vol. 461, pp. 992–996. doi 10.1038/nature08430CrossRefPubMedGoogle Scholar
  29. 29.
    Stepanov, V.A., Bocharova, A.V., Marusin, A.V., et al., Replicative association analysis of genetic markers of cognitive traits with Alzheimer’s disease in the Russian population, Mol. Biol. (Moscow), 2014, vol. 44, no. 6, pp. 835–844. doi 10.7868/S0026898414060160CrossRefGoogle Scholar
  30. 30.
    Borghans, J.A., Beltman, J.B., and De Boer, R.J., Mhc polymorphism under host—pathogen coevolution, Immunogenetics, 2004, vol. 55, pp. 732–739.CrossRefPubMedGoogle Scholar
  31. 31.
    Hancock, D.B., Romieu, I., Shi, M., et al., Genome-Wide association study implicates chromosome 9q21.31 as a susceptibility locus for asthma in Mexican children, PLoS Genet., 2009, vol. 5, no. 8. e1000623. doi 10.1371/journal.pgen.1000623CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rose, E.J., Morris, D.W., Fahey, C., et al., The effect of the neurogranin schizophrenia risk variant rs12807809 on brain structure and function, Twin Res. Hum. Genet., 2012, vol. 15, no. 3, pp. 296–303. doi 10.1017/thg.2012.7CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. V. Bocharova
    • 1
    Email author
  • V. A. Stepanov
    • 1
    • 2
  • A. V. Marusin
    • 1
  • V. N. Kharkov
    • 1
    • 2
  • K. V. Vagaitseva
    • 1
    • 2
  • O. Yu. Fedorenko
    • 3
  • N. A. Bokhan
    • 2
    • 3
  • A. V. Semke
    • 3
  • S. A. Ivanova
    • 3
  1. 1.Research Institute of Medical GeneticsRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Mental Health Research InstituteRussian Academy of SciencesTomskRussia

Personalised recommendations