Abstract
During the last decades, site-specific DNA endonucleases have served as a key instrument to study primary structure of DNA and genetic engineering. Here, we describe examples of these enzyme uses in genome-wide analysis of human DNA including restriction endonucleases involvement during sample preparation for sequencing using NGS devices, as well as visualization of cleavage of DNA repeats by endonucleases. The first studies on application of DNA endonucleases in the rapidly developing area of epigenetic analysis of genomes, which is facilitated by the recent discovery of a new class of enzymes, 5-methylcytosinedependent site-specific DNA endonucleases, are of special interest.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Smith, H.O. and Wilcox, K.W., A restriction enzyme from Hemophilus influenza: 1. Purification and general properties, J. Mol. Biol., 1970, vol. 51, no. 2, pp. 379–391. doi 10.1016/0022-2836(70)90149-X
Loenen, W.A., Dryden, D.T., Raleigh, E.A., et al., Highlights of the DNA cutters: a short history of the restriction enzymes, Nucleic Acids Res., 2014, vol. 42, no. 1, pp. 3–19. doi 10.1093/nar/gkt990
Zheleznaya, L.A., Kachalova, G.S., Artyukh, R.I., et al., Nicking endonucleases, Usp. Biol. Khim., 2009, vol. 49, pp. 107–128.
Hafez, M. and Hausner, G., Homing endonucleases: DNA scissors on a mission, Genome, 2012, vol. 55, no. 8, pp. 553–569. doi 10.1139/g2012-049
Bogdanove, A.J. and Voytas, D.F., TAL effectors: customizable proteins for DNA targeting, Science, 2011, vol. 333, no. 6051, pp. 1843–1846. doi 10.1126/science. 1204094
Peters, J.M., Silvis, M.R., Zhao, D., et al., Bacterial CRISPR: accomplishments and prospects, Curr. Opin Microbiol., 2015, vol. 27, pp. 121–126. doi 10.1016/j.mib.2015.08.007
Zemlyanskaya, E.V. and Degtyarev, S.Kh., Substrate specificity and properties of methyl-directed site-specific DNA endonucleases, Mol. Biol. (Moscow), 2013, vol. 47, no. 6, pp. 784–795. doi 10.1134/S0026893313060186
Roberts, R.J., How restriction enzymes became the workhorses of molecular biology, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 17, pp. 5905–5908. doi 10.1073/pnas.0500923102
International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome, Nature, 2004, vol. 431, no. 7011, pp. 931–945. doi 10.1038/nature03001
Church, D.M., Schneider, V.A., Graves, T., et al., Modernizing reference genome assemblies, PLoS Biol., 2011, vol. 9, no. 7. e1001091. doi 10.1371/journal. pbio.1001091
Jelinek, W.R. and Schmid, C.W., Repetitive sequences in eukaryotic DNA and their expression, Annu. Rev. Biochem., 1982, vol. 51, pp. 813–844. doi 10.1146/annurev.bi.51.070182.004121
Biscotti, M.A., Olmo, E., and Heslop-Harrison, J.S., Repetitive DNA in eukaryotic genomes, Chromosome Res., 2015, vol. 23, no. 3, pp. 415–420. doi 10.1007/s10577-015-9499-z
Hardman, N., Structure and function of repetitive DNA in eukaryotes, Biochem. J., 1986, vol. 234, no. 1, pp. 1–11. doi 10.1042/bj2340001
Fedorova, L.V., Daizadekh, I., Fedorov, A.N., and Ryskov, A.P., In silico analysis of the restriction fragment length distribution in the human genome, Russ. J. Genet., 2001, vol. 37, no. 4, pp. 358–367.
Abdurashitov, M.A., Tomilov, V.N., Chernukhin, V.A., et al., Method of restriction analysis of the mammal genomes in silico, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2006, vol. 2, no. 3, pp. 29–38.
Chernukhin, V.A., Abdurashitov, M.A., Tomilov, V.N., et al., Comparative restriction analysis of the mouse chromosome DNA cleavage in vitro and in silico, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2007, vol. 3, no. 4, pp. 19–27.
Chernukhin, V.A., Abdurashitov, M.A., Tomilov, V.N., et al., Comparative restriction analysis of the rat chromosome DNA cleavage in vitro and in silico, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2006, vol. 2, no. 3, pp. 39–46.
Abdurashitov, M.A., Tomilov, V.N., Chernukhin, V.A., et al., Restriction analysis of the human DNA—new opportunities in DNA diagnostics, Med. Genet., 2007, vol. 6, no. 8, pp. 29–36.
Karolchik, D., Hinrichs, A.S., Furey, T.S., et al., The UCSC Table Browser data retrieval tool, Nucleic Acids Res., 2004, vol. 32, suppl. 1, pp. D493–D496. doi 10.1093/nar/gkh103
Head, S.R., Komori, H.K., LaMere, S.A., et al., Library construction for next-generation sequencing: overviews and challenges, Biotechniques, 2014, vol. 56, no. 2, pp. 61–68. doi 10.2144/000114133
Parkinson, N.J., Maslau, S., Ferneyhough, B., et al., Preparation of high-quality next-generation sequencing libraries from picogram quantities of target DNA, Genome Res., 2012, vol. 22, no. 1, pp. 125–133. doi 10.1101/gr.124016.111
Fullwood, M.J., Wei, C.L., Liu, E.T., and Ruan, Y., Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses, Genome Res., 2009, vol. 19, no. 4, pp. 521–532. doi 10.1101/gr.074906.107
Wheeler, D.A., Srinivasan, M., Egholm, M., et al., The complete genome of an individual by massively parallel DNA sequencing, Nature, 2008, vol. 452, no. 7189, pp. 872–876.
Davey, J.W., Hohenlohe, P.A., Etter, P.D., et al., Genome-wide genetic marker discovery and genotyping using next-generation sequencing, Nat. Rev. Genet., 2011, vol. 12, no. 7, pp. 499–510. doi 10.1038/nrg3012
Pingoud, A., Wilson, G.G., and Wende, W., Type II restriction endonucleases—a historical perspective and more, Nucleic Acids Res., 2014, vol. 42, no. 12, pp. 7489–7527. doi 10.1093/nar/gku447
Olkhov-Mitsel, E. and Bapat, B., Strategies for discovery and validation of methylated and hydroxymethylated DNA biomarkers, Cancer Med., 2012, vol. 1, no. 2, pp. 237–260. doi 10.1002/cam4.22
Jeltsch, A., Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases, Chembiochem., 2002, vol. 3, no. 4, pp. 274–293. doi 10.1002/1439-7633(20020402)3:4〈274::AIDCBIC274〉 3.0.CO;2-S
Robertson, K.D. and Jones, P.A., DNA methylation: past, present and future directions, Carcinogenesis, 2000, vol. 21, no. 3, pp. 461–467. doi 10.1093/carcin/21.3.461
Sánchez-Romero, M.A., Cota, I., and Casadesús, J., DNA methylation in bacteria: from the methyl group to the methylome, Curr. Opin. Microbiol., 2015, vol. 25, pp. 9–16. doi 10.1016/j.mib.2015.03.004
He, X.J., Chen, T., and Zhu, J.K., Regulation and function of DNA methylation in plants and animals, Cell Res., 2011, vol. 21, no. 3, pp. 442–465. doi 10.1038/cr.2011.23
Portela, A. and Esteller, M., Epigenetic modifications and human disease, Nat. Biotechnol., 2010, vol. 28, no. 10, pp. 1057–1068. doi 10.1038/nbt.1685
Martín-Subero, J.I. and Esteller, M., Profiling epigenetic alterations in disease, Adv. Exp. Med. Biol., 2011, vol. 711, pp. 162–177. doi 10.1007/978-1-4419-8216-2_12
Brazel, A.J. and Vernimmen, D., The complexity of epigenetic diseases, J. Pathol., 2016, vol. 238, no. 2, pp. 333–344. doi 10.1002/path.4647
Ghavifekr, F.M., Farshdousti, H.M., Shanehbandi, D., and Baradaran, B., DNA methylation pattern as important epigenetic criterion in cancer, Genet. Res. Int., 2013, p. 2013:317569. doi 10.1155/2013/317569
Jung, M. and Pfeifer, G.P., Aging and DNA methylation, BMC Biol., 2015, vol. 13, p. 7. doi 10.1186/s12915-015-0118-4
Lister, R., Pelizzola, M., Dowen, R.H., et al., Human DNA methylomes at base resolution show widespread epigenomic differences, Nature, 2009, vol. 462, no. 7271, pp. 315–322. doi 10.1038/nature08514
Grunau, C., Clark, S.J., and Rosenthal, A., Bisulfite genomic sequencing: systematic investigation of critical experimental parameters, Nucleic Acids Res., 2001, vol. 29, no. 13. e65-5. doi 10.1093/nar/29.13.e65
Meissner, A., Gnirke, A., Bell, G.W., et al., Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis, Nucleic Acids Res., 2005, vol. 33, no. 18, pp. 5868–5877. doi 10.1093/nar/gki901
Laird, P.W., Principles and challenges of genome-wide DNA methylation analysis, Nat. Rev. Genet., 2010, vol. 11, no. 3, pp. 191–203. doi 10.1038/nrg2732
Fouse, S.D., Nagarajan, R.P., and Costello, J.F., Genome-scale DNA methylation analysis, Epigenomics, 2010, vol. 2, no. 1, pp. 105–117. doi 10.2217/epi.09.35
Umer, M. and Herceg, Z., Deciphering the epigenetic code: an overview of DNA methylation analysis methods, Antioxid Redox Signal., 2013, vol. 18, no. 15, pp. 1972–1986. doi 10.1089/ars.2012.4923
Ku, C.S., Naidoo, N., Wu, M., and Soong, R., Studying the epigenome using next generation sequencing, J. Med. Genet., 2011, vol. 48, no. 11, pp. 721–730. doi 10.1136/jmedgenet-2011-100242
Kawai, J., Hirotsune, S., Hirose, K., et al., Methylation profiles of genomic DNA of mouse developmental brain detected by restriction landmark genomic scanning (RLGS) method, Nucleic Acids Res., 1993, vol. 21, no. 24, pp. 5604–5608. doi 10.1093/nar/21.24.5604
Liang, G., Gonzalgo, M.L., Salem, C., and Jones, P.A., Identification of DNA methylation differences during tumorigenesis by methylation-sensitive arbitrarily primed polymerase chain reaction, Methods, 2002, vol. 27, no. 2, pp. 150–155. doi 10.1016/S1046-2023(02)00068-3
Frigola, J., Ribas, M., Risques, R.A., and Peinado, M.A., Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS), Nucleic Acids Res., 2002, vol. 30, no. 7. e28. doi 10.1093/nar/30.7.e28
Strelnikov, V.V., Tanas, A.S., Zemlyakova, V.V., and Zaletaev, D.V., The development of new diagnostic methods of DNA methylation markers in oncology, in Sistemy geneticheskikh i epigeneticheskikh markerov v diagnostike onkologicheskikh novoobrazovanii (Systems of Genetic and Epigenetic Markers in Diagnostics of Oncological Neoplasms), Moscow: Meditsina, 2009, pp. 349–384.
Roberts, R.J. and Macelis, D., Restriction enzymes and their isoschizomers, Nucleic Acids Res., 1991, vol. 19, suppl., pp. 2077–2109. doi 10.1093/nar/19.suppl. 2077
Hatada, I., Fukasawa, M., Kimura, M., et al., Genome-wide profiling of promoter methylation in human, Oncogene, 2006, vol. 25, no. 21, pp. 3059–3064. doi 10.1038/sj.onc.1209331
Oda, M., Glass, J.L., Thompson, R.F., et al., Highresolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers, Nucleic Acids Res., 2009, vol. 37, no. 12, pp. 3829–3839. doi 10.1093/nar/gkp260
Ball, M.P., Li, J.B., Gao, Y., et al., Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells, Nat. Biotechnol., 2009, vol. 27, no. 4, pp. 361–368. doi 10.1038/nbt.1533
Brunner, A.L., Johnson, D.S., Kim, S.W., et al., Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver, Genome Res., 2009, vol. 19, no. 6, pp. 1044–1056. doi 10.1101/gr.088773.108
Edwards, J.R., O’Donnell, A.H., Rollins, R.A., et al., Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns, Genome Res., 2010, vol. 20, no. 7, pp. 972–980. doi 10.1101/gr.101535.109
Loenen, W.A. and Raleigh, E.A., The other face of restriction: modification-dependent enzymes, Nucleic Acids Res., 2014, vol. 42, no. 1, pp. 56–69. doi 10.1093/nar/gkt747
Gonchar, D.A., Akishev, A.G., and Degtyarev, S.Kh., BlsI-and GlaI-PCR assay—a new method for DNA methylation study, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2010, vol. 6, no. 1, pp. 5–12.
Akishev, A.G., Gonchar, D.A., Abdurashitov, M.A., and Degtyarev, S.Kh., Epigenetic typing of human cancer cell lines by BlsI-and GlaI-PCR assays, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2011, vol. 7, no. 3, pp. 5–16.
Raleigh, E.A., Organization and function of the mcrBC genes of Escherichia coli K-12, Mol. Microbiol., 1992, vol. 6, no. 9, pp. 1079–1086. doi 10.1111/j.1365-2958.1992.tb01546.x
Cohen-Karni, D., Xu, D., Apone, L., et al., The MspJI family of modification-dependent restriction endonucleases for epigenetic studies, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 27, pp. 11040–11045. doi 10.1073/pnas.1018448108
Abdurashitov, M.A., Tomilov, V.N., Gonchar, D.A., et al., Mapping of R(5mC)GY sites in the genome of human malignant cell line Raji, Biol. Med. (Aligarh), 2015, vol. 7, no. 4, p. BM-135-15.
Handa, V. and Jeltsch, A., Profound sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome, J. Mol. Biol., 2006, vol. 348, no. 5, pp. 1103–1112. doi 10.1016/j.jmb.2005.02.044
Abdurashitov, M.A., Kuksova, A.N., Akishev, A.G., et al., Electrochemical methods of direct detection of DNA synthesis without added primer, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2013, vol. 9, no. 3, pp. 15–23.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © M.A. Abdurashitov, S.Kh. Degtyarev, 2017, published in Genetika, 2017, Vol. 53, No. 1, pp. 3–11.
Rights and permissions
About this article
Cite this article
Abdurashitov, M.A., Degtyarev, S.K. Use of site-specific DNA endonucleases in genome-wide studies of human DNA. Russ J Genet 53, 1–8 (2017). https://doi.org/10.1134/S1022795417010021
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1022795417010021


