Skip to main content

Advertisement

Log in

Use of site-specific DNA endonucleases in genome-wide studies of human DNA

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

During the last decades, site-specific DNA endonucleases have served as a key instrument to study primary structure of DNA and genetic engineering. Here, we describe examples of these enzyme uses in genome-wide analysis of human DNA including restriction endonucleases involvement during sample preparation for sequencing using NGS devices, as well as visualization of cleavage of DNA repeats by endonucleases. The first studies on application of DNA endonucleases in the rapidly developing area of epigenetic analysis of genomes, which is facilitated by the recent discovery of a new class of enzymes, 5-methylcytosinedependent site-specific DNA endonucleases, are of special interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Smith, H.O. and Wilcox, K.W., A restriction enzyme from Hemophilus influenza: 1. Purification and general properties, J. Mol. Biol., 1970, vol. 51, no. 2, pp. 379–391. doi 10.1016/0022-2836(70)90149-X

    Article  CAS  PubMed  Google Scholar 

  2. Loenen, W.A., Dryden, D.T., Raleigh, E.A., et al., Highlights of the DNA cutters: a short history of the restriction enzymes, Nucleic Acids Res., 2014, vol. 42, no. 1, pp. 3–19. doi 10.1093/nar/gkt990

    Article  CAS  PubMed  Google Scholar 

  3. Zheleznaya, L.A., Kachalova, G.S., Artyukh, R.I., et al., Nicking endonucleases, Usp. Biol. Khim., 2009, vol. 49, pp. 107–128.

    Google Scholar 

  4. Hafez, M. and Hausner, G., Homing endonucleases: DNA scissors on a mission, Genome, 2012, vol. 55, no. 8, pp. 553–569. doi 10.1139/g2012-049

    Article  CAS  PubMed  Google Scholar 

  5. Bogdanove, A.J. and Voytas, D.F., TAL effectors: customizable proteins for DNA targeting, Science, 2011, vol. 333, no. 6051, pp. 1843–1846. doi 10.1126/science. 1204094

    Article  CAS  PubMed  Google Scholar 

  6. Peters, J.M., Silvis, M.R., Zhao, D., et al., Bacterial CRISPR: accomplishments and prospects, Curr. Opin Microbiol., 2015, vol. 27, pp. 121–126. doi 10.1016/j.mib.2015.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zemlyanskaya, E.V. and Degtyarev, S.Kh., Substrate specificity and properties of methyl-directed site-specific DNA endonucleases, Mol. Biol. (Moscow), 2013, vol. 47, no. 6, pp. 784–795. doi 10.1134/S0026893313060186

    Article  CAS  Google Scholar 

  8. Roberts, R.J., How restriction enzymes became the workhorses of molecular biology, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 17, pp. 5905–5908. doi 10.1073/pnas.0500923102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome, Nature, 2004, vol. 431, no. 7011, pp. 931–945. doi 10.1038/nature03001

    Article  Google Scholar 

  10. Church, D.M., Schneider, V.A., Graves, T., et al., Modernizing reference genome assemblies, PLoS Biol., 2011, vol. 9, no. 7. e1001091. doi 10.1371/journal. pbio.1001091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jelinek, W.R. and Schmid, C.W., Repetitive sequences in eukaryotic DNA and their expression, Annu. Rev. Biochem., 1982, vol. 51, pp. 813–844. doi 10.1146/annurev.bi.51.070182.004121

    Article  CAS  PubMed  Google Scholar 

  12. Biscotti, M.A., Olmo, E., and Heslop-Harrison, J.S., Repetitive DNA in eukaryotic genomes, Chromosome Res., 2015, vol. 23, no. 3, pp. 415–420. doi 10.1007/s10577-015-9499-z

    Article  CAS  PubMed  Google Scholar 

  13. Hardman, N., Structure and function of repetitive DNA in eukaryotes, Biochem. J., 1986, vol. 234, no. 1, pp. 1–11. doi 10.1042/bj2340001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fedorova, L.V., Daizadekh, I., Fedorov, A.N., and Ryskov, A.P., In silico analysis of the restriction fragment length distribution in the human genome, Russ. J. Genet., 2001, vol. 37, no. 4, pp. 358–367.

    Article  CAS  Google Scholar 

  15. Abdurashitov, M.A., Tomilov, V.N., Chernukhin, V.A., et al., Method of restriction analysis of the mammal genomes in silico, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2006, vol. 2, no. 3, pp. 29–38.

    Google Scholar 

  16. Chernukhin, V.A., Abdurashitov, M.A., Tomilov, V.N., et al., Comparative restriction analysis of the mouse chromosome DNA cleavage in vitro and in silico, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2007, vol. 3, no. 4, pp. 19–27.

    Google Scholar 

  17. Chernukhin, V.A., Abdurashitov, M.A., Tomilov, V.N., et al., Comparative restriction analysis of the rat chromosome DNA cleavage in vitro and in silico, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2006, vol. 2, no. 3, pp. 39–46.

    Google Scholar 

  18. Abdurashitov, M.A., Tomilov, V.N., Chernukhin, V.A., et al., Restriction analysis of the human DNA—new opportunities in DNA diagnostics, Med. Genet., 2007, vol. 6, no. 8, pp. 29–36.

    CAS  Google Scholar 

  19. Karolchik, D., Hinrichs, A.S., Furey, T.S., et al., The UCSC Table Browser data retrieval tool, Nucleic Acids Res., 2004, vol. 32, suppl. 1, pp. D493–D496. doi 10.1093/nar/gkh103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Head, S.R., Komori, H.K., LaMere, S.A., et al., Library construction for next-generation sequencing: overviews and challenges, Biotechniques, 2014, vol. 56, no. 2, pp. 61–68. doi 10.2144/000114133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parkinson, N.J., Maslau, S., Ferneyhough, B., et al., Preparation of high-quality next-generation sequencing libraries from picogram quantities of target DNA, Genome Res., 2012, vol. 22, no. 1, pp. 125–133. doi 10.1101/gr.124016.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fullwood, M.J., Wei, C.L., Liu, E.T., and Ruan, Y., Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses, Genome Res., 2009, vol. 19, no. 4, pp. 521–532. doi 10.1101/gr.074906.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wheeler, D.A., Srinivasan, M., Egholm, M., et al., The complete genome of an individual by massively parallel DNA sequencing, Nature, 2008, vol. 452, no. 7189, pp. 872–876.

    Article  CAS  PubMed  Google Scholar 

  24. Davey, J.W., Hohenlohe, P.A., Etter, P.D., et al., Genome-wide genetic marker discovery and genotyping using next-generation sequencing, Nat. Rev. Genet., 2011, vol. 12, no. 7, pp. 499–510. doi 10.1038/nrg3012

    Article  CAS  PubMed  Google Scholar 

  25. Pingoud, A., Wilson, G.G., and Wende, W., Type II restriction endonucleases—a historical perspective and more, Nucleic Acids Res., 2014, vol. 42, no. 12, pp. 7489–7527. doi 10.1093/nar/gku447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olkhov-Mitsel, E. and Bapat, B., Strategies for discovery and validation of methylated and hydroxymethylated DNA biomarkers, Cancer Med., 2012, vol. 1, no. 2, pp. 237–260. doi 10.1002/cam4.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeltsch, A., Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases, Chembiochem., 2002, vol. 3, no. 4, pp. 274–293. doi 10.1002/1439-7633(20020402)3:4〈274::AIDCBIC274〉 3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  28. Robertson, K.D. and Jones, P.A., DNA methylation: past, present and future directions, Carcinogenesis, 2000, vol. 21, no. 3, pp. 461–467. doi 10.1093/carcin/21.3.461

    Article  CAS  PubMed  Google Scholar 

  29. Sánchez-Romero, M.A., Cota, I., and Casadesús, J., DNA methylation in bacteria: from the methyl group to the methylome, Curr. Opin. Microbiol., 2015, vol. 25, pp. 9–16. doi 10.1016/j.mib.2015.03.004

    Article  PubMed  Google Scholar 

  30. He, X.J., Chen, T., and Zhu, J.K., Regulation and function of DNA methylation in plants and animals, Cell Res., 2011, vol. 21, no. 3, pp. 442–465. doi 10.1038/cr.2011.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Portela, A. and Esteller, M., Epigenetic modifications and human disease, Nat. Biotechnol., 2010, vol. 28, no. 10, pp. 1057–1068. doi 10.1038/nbt.1685

    Article  CAS  PubMed  Google Scholar 

  32. Martín-Subero, J.I. and Esteller, M., Profiling epigenetic alterations in disease, Adv. Exp. Med. Biol., 2011, vol. 711, pp. 162–177. doi 10.1007/978-1-4419-8216-2_12

    Article  PubMed  Google Scholar 

  33. Brazel, A.J. and Vernimmen, D., The complexity of epigenetic diseases, J. Pathol., 2016, vol. 238, no. 2, pp. 333–344. doi 10.1002/path.4647

    Article  PubMed  Google Scholar 

  34. Ghavifekr, F.M., Farshdousti, H.M., Shanehbandi, D., and Baradaran, B., DNA methylation pattern as important epigenetic criterion in cancer, Genet. Res. Int., 2013, p. 2013:317569. doi 10.1155/2013/317569

    Google Scholar 

  35. Jung, M. and Pfeifer, G.P., Aging and DNA methylation, BMC Biol., 2015, vol. 13, p. 7. doi 10.1186/s12915-015-0118-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lister, R., Pelizzola, M., Dowen, R.H., et al., Human DNA methylomes at base resolution show widespread epigenomic differences, Nature, 2009, vol. 462, no. 7271, pp. 315–322. doi 10.1038/nature08514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grunau, C., Clark, S.J., and Rosenthal, A., Bisulfite genomic sequencing: systematic investigation of critical experimental parameters, Nucleic Acids Res., 2001, vol. 29, no. 13. e65-5. doi 10.1093/nar/29.13.e65

    Google Scholar 

  38. Meissner, A., Gnirke, A., Bell, G.W., et al., Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis, Nucleic Acids Res., 2005, vol. 33, no. 18, pp. 5868–5877. doi 10.1093/nar/gki901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laird, P.W., Principles and challenges of genome-wide DNA methylation analysis, Nat. Rev. Genet., 2010, vol. 11, no. 3, pp. 191–203. doi 10.1038/nrg2732

    Article  CAS  PubMed  Google Scholar 

  40. Fouse, S.D., Nagarajan, R.P., and Costello, J.F., Genome-scale DNA methylation analysis, Epigenomics, 2010, vol. 2, no. 1, pp. 105–117. doi 10.2217/epi.09.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Umer, M. and Herceg, Z., Deciphering the epigenetic code: an overview of DNA methylation analysis methods, Antioxid Redox Signal., 2013, vol. 18, no. 15, pp. 1972–1986. doi 10.1089/ars.2012.4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ku, C.S., Naidoo, N., Wu, M., and Soong, R., Studying the epigenome using next generation sequencing, J. Med. Genet., 2011, vol. 48, no. 11, pp. 721–730. doi 10.1136/jmedgenet-2011-100242

    Article  CAS  PubMed  Google Scholar 

  43. Kawai, J., Hirotsune, S., Hirose, K., et al., Methylation profiles of genomic DNA of mouse developmental brain detected by restriction landmark genomic scanning (RLGS) method, Nucleic Acids Res., 1993, vol. 21, no. 24, pp. 5604–5608. doi 10.1093/nar/21.24.5604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang, G., Gonzalgo, M.L., Salem, C., and Jones, P.A., Identification of DNA methylation differences during tumorigenesis by methylation-sensitive arbitrarily primed polymerase chain reaction, Methods, 2002, vol. 27, no. 2, pp. 150–155. doi 10.1016/S1046-2023(02)00068-3

    Article  CAS  PubMed  Google Scholar 

  45. Frigola, J., Ribas, M., Risques, R.A., and Peinado, M.A., Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS), Nucleic Acids Res., 2002, vol. 30, no. 7. e28. doi 10.1093/nar/30.7.e28

    Article  PubMed  PubMed Central  Google Scholar 

  46. Strelnikov, V.V., Tanas, A.S., Zemlyakova, V.V., and Zaletaev, D.V., The development of new diagnostic methods of DNA methylation markers in oncology, in Sistemy geneticheskikh i epigeneticheskikh markerov v diagnostike onkologicheskikh novoobrazovanii (Systems of Genetic and Epigenetic Markers in Diagnostics of Oncological Neoplasms), Moscow: Meditsina, 2009, pp. 349–384.

    Google Scholar 

  47. Roberts, R.J. and Macelis, D., Restriction enzymes and their isoschizomers, Nucleic Acids Res., 1991, vol. 19, suppl., pp. 2077–2109. doi 10.1093/nar/19.suppl. 2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hatada, I., Fukasawa, M., Kimura, M., et al., Genome-wide profiling of promoter methylation in human, Oncogene, 2006, vol. 25, no. 21, pp. 3059–3064. doi 10.1038/sj.onc.1209331

    Article  CAS  PubMed  Google Scholar 

  49. Oda, M., Glass, J.L., Thompson, R.F., et al., Highresolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers, Nucleic Acids Res., 2009, vol. 37, no. 12, pp. 3829–3839. doi 10.1093/nar/gkp260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ball, M.P., Li, J.B., Gao, Y., et al., Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells, Nat. Biotechnol., 2009, vol. 27, no. 4, pp. 361–368. doi 10.1038/nbt.1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brunner, A.L., Johnson, D.S., Kim, S.W., et al., Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver, Genome Res., 2009, vol. 19, no. 6, pp. 1044–1056. doi 10.1101/gr.088773.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Edwards, J.R., O’Donnell, A.H., Rollins, R.A., et al., Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns, Genome Res., 2010, vol. 20, no. 7, pp. 972–980. doi 10.1101/gr.101535.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Loenen, W.A. and Raleigh, E.A., The other face of restriction: modification-dependent enzymes, Nucleic Acids Res., 2014, vol. 42, no. 1, pp. 56–69. doi 10.1093/nar/gkt747

    Article  CAS  PubMed  Google Scholar 

  54. Gonchar, D.A., Akishev, A.G., and Degtyarev, S.Kh., BlsI-and GlaI-PCR assay—a new method for DNA methylation study, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2010, vol. 6, no. 1, pp. 5–12.

    Google Scholar 

  55. Akishev, A.G., Gonchar, D.A., Abdurashitov, M.A., and Degtyarev, S.Kh., Epigenetic typing of human cancer cell lines by BlsI-and GlaI-PCR assays, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2011, vol. 7, no. 3, pp. 5–16.

    Google Scholar 

  56. Raleigh, E.A., Organization and function of the mcrBC genes of Escherichia coli K-12, Mol. Microbiol., 1992, vol. 6, no. 9, pp. 1079–1086. doi 10.1111/j.1365-2958.1992.tb01546.x

    Article  CAS  PubMed  Google Scholar 

  57. Cohen-Karni, D., Xu, D., Apone, L., et al., The MspJI family of modification-dependent restriction endonucleases for epigenetic studies, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 27, pp. 11040–11045. doi 10.1073/pnas.1018448108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abdurashitov, M.A., Tomilov, V.N., Gonchar, D.A., et al., Mapping of R(5mC)GY sites in the genome of human malignant cell line Raji, Biol. Med. (Aligarh), 2015, vol. 7, no. 4, p. BM-135-15.

    Google Scholar 

  59. Handa, V. and Jeltsch, A., Profound sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome, J. Mol. Biol., 2006, vol. 348, no. 5, pp. 1103–1112. doi 10.1016/j.jmb.2005.02.044

    Article  Google Scholar 

  60. Abdurashitov, M.A., Kuksova, A.N., Akishev, A.G., et al., Electrochemical methods of direct detection of DNA synthesis without added primer, Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova, 2013, vol. 9, no. 3, pp. 15–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kh. Degtyarev.

Additional information

Original Russian Text © M.A. Abdurashitov, S.Kh. Degtyarev, 2017, published in Genetika, 2017, Vol. 53, No. 1, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdurashitov, M.A., Degtyarev, S.K. Use of site-specific DNA endonucleases in genome-wide studies of human DNA. Russ J Genet 53, 1–8 (2017). https://doi.org/10.1134/S1022795417010021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417010021

Keywords