Skip to main content
Log in

The length of chromatin loops in meiotic prophase I of warm-blooded vertebrates depends on the DNA compositional organization

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In meiotic prophase I, chromatin fibrils attached to the lateral elements of the synaptonemal complexes (SC) form loops. SCAR DNA (synaptonemal complex associated regions of DNA) is a family of genomic DNA tightly associated with the SC and located at the chromatin loop basements. Using the hybridization technique, it was demonstrated that localization of SCAR DNA was evolutionarily conserved in the isochore compositional fractions of the three examined genomes of warm-blooded vertebrates—human, chicken, and golden hamster. The introduction of the concept of the comparative loops (CL) of DNA that form of chromatin attach to SC in the isochore compositional fractions provided the calculation of their length. An inverse proportional relationship between the length of CL DNA and the GC level in the isochore compartments of the studied warm-blooded vertebrate genomes was revealed. An exception was the GCpoorest L1 isochore family. For different compositional isochores of the human and chicken genomes, the number of genes in the CL DNA was evaluated. A model of the formation of GC-rich isochores in vertebrate genomes, according to which there was not only an increase in the GC level but also the elimination of functionally insignificant noncoding DNA regions, as well as joining of isochores decreasing in size, was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardi, G., Olofsson, B., Filipski, J., et al., The mosaic genome of warm-blooded vertebrates, Science, 1985, vol. 228, no. 4702, pp. 953–958. doi 10.1126/science. 4001930

    Article  CAS  PubMed  Google Scholar 

  2. Bernardi, G., Structural and Evolutionary Genomics, Natural Selection in Genome Evolution, Amsterdam: Elsevier, 2005.

    Google Scholar 

  3. Costantini, M., Cammarano, R., and Bernardi, G., The evolution of isochore patterns in vertebrate genomes, BMC Genomics, 2009, vol. 10, no. 1, p. 146. doi 10.1186/1471-2164-10-146

    Article  PubMed  PubMed Central  Google Scholar 

  4. Costantini, M. and Bernardi, G., Replication timing, chromosomal bands, and isochores, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 9, pp. 3433–3437. doi 10.1073/pnas.0710587105

    Article  CAS  PubMed  Google Scholar 

  5. Costantini, M., Clay, O., Federico, C., et al., Human chromosomal bands: nested structure, high-definition map and molecular basis, Chromosoma, 2007, vol. 116, pp. 29–40. doi 10.1007/s00412-006-0078-0

    CAS  PubMed  Google Scholar 

  6. Aissani, B. and Bernardi, G., CpG islands: features and distribution in genomes of vertebrates, Gene, 1991, vol. 106, no. 2, pp. 173–183. doi 10.1016/0378-1119(91)90198-K

    Article  CAS  PubMed  Google Scholar 

  7. Aissani, B. and Bernardi, G., CpG islands, genes and isochores in the genomes of vertebrates, Gene, 1991, vol. 106, no. 2, pp. 185–195. doi 10.1016/0378-1119(91)90198-K

    CAS  PubMed  Google Scholar 

  8. Bernardi, G., Mouchiroud, D., and Gautier, C., Compositional patterns in vertebrate genomes: conservation and change in evolution, J. Mol. Evol., 1998, pp. 28, nos. 1–2, pp. 7–18. doi 10.1007/BF02143493

    Google Scholar 

  9. Hughes, S., Clay, O., and Bernardi, G., Compositional patterns in reptilian genomes, Gene, 2002, vol. 295, no. 2, pp. 323–329.

    Article  CAS  PubMed  Google Scholar 

  10. Costantini, M., Di Filippo, M., Auletta, F., and Bernardi, G., Isochore pattern and gene distribution in the chicken genome, Gene, 2007, vol. 400, nos. 1–2, pp. 9–15. doi 10.1016/j.gene.2007.05.025

    Article  CAS  PubMed  Google Scholar 

  11. Bernardi, G., Isochores and the evolutionary genomics of vertebrates, Gene, 2000, vol. 241, no. 1, pp. 3–17. doi 10.1016/S0378-1119(99)00485-0

    Article  CAS  PubMed  Google Scholar 

  12. Bernardi, G., Misunderstandings about isochores: 1, Gene, 2001, vol. 276. nos. 1–2, pp. 3–13. doi 10.1016/S0378-1119(01)00644-8

    Article  CAS  PubMed  Google Scholar 

  13. Bernardi, G., The isochore organization of the human genome and its evolutionary history: a review, Gene, 1993, vol. 135, pp. 57–66.

    Article  CAS  PubMed  Google Scholar 

  14. Moens, P.B. and Pearlman, R.E., Chromatin organization at meiosis, BioEssays, 1988, vol. 9, no. 5, pp. 151–153.

    Article  CAS  PubMed  Google Scholar 

  15. Stack, S.M. and Anderson, L.K., A model for chromosome structure during the mitotic and meiotic cell cycle, Chromosome Res., 2000, vol. 9, no. 3, pp. 175–198.

    Article  Google Scholar 

  16. Bogdanov, Yu.F. and Kolomiets, O.L., Sinaptonemnyi kompleks–indikator dinamiki meioza i izmenchivosti khromosom (Synaptonemal Complex–An Indicator of the Meiosis Dynamics and Chromosome Variation), Moscow: KMK, 2007.

    Google Scholar 

  17. Barlow, A.L. and Hulten, M.A., Combined immunocytogenetic and molecular cytogenetic analysis of meiosis I human, Chromosome Res., 1996, vol. 4, no. 8, pp. 562–573. doi 10.1007/BF02261719

    Article  CAS  PubMed  Google Scholar 

  18. Pigozzi, M.I., Localization of single–copy sequences on chicken synaptonemal complex spreads using fluorescence in situ hybridization (FISH), Cytogent. Genome Res., 2007, vol. 119, nos. 1–2, pp. 105–112. doi 10.1159/000109626

    Article  CAS  Google Scholar 

  19. Spangenberg, V.E., Dynamics of the structural organization of chromosomes in prophase I of meiosis in mouse and humans, Cand. Sci. (Biol.) Dissertation, Moscow: Vavilov Inst. Gen. Genet. Ross. Acad. Sci., 2013.

    Google Scholar 

  20. Pearlman, R.E., Tsao, N., and Moens, P.B., Synaptonemal complexes from DNase-treated rat pachytene chromosomes contain (GC)n and LINE/SINE sequences, Genetics, 1992, vol. 130, no. 4, pp. 865–872.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Karpova, O.I., Safronov, V.V., Zaitseva, S.P., and Bogdanov, Yu.F., Some properties of the DNA isolated from the mouse synaptonemal complex fraction, Mol. Biol. (Moscow), 1989, vol. 23, no. 2, pp. 571–579.

    CAS  Google Scholar 

  22. Karpova, O.I., Penkina, M.V., Dadashev, S.Ya., et al., Features of the primary structure of DNA from the synaptonemal complex of golden hamster, Mol. Biol. (Moscow), 1995, vol. 29, no. 2, pp. 289–295.

    Google Scholar 

  23. Penkina, M.V., Karpova, O.I., Dadashev, S.Ya., et al., Periodicity of triplet distribution in golden hamster synaptonemal complex DNA, Mol. Biol. (Moscow), 1997, vol. 31, no. 2, pp. 198–201.

    CAS  Google Scholar 

  24. Penkina, M.V., Karpova, O.I., Dadashev, S.Ya., et al., Distribution of tetranucleotide repeats in the family of golden hamster DNA sequences tightly associated with the synaptonemal complex, Mol. Biol. (Moscow), 1999, vol. 33, no. 4, pp. 516–520.

    CAS  Google Scholar 

  25. Karpova, O.I., Sakkone, S., Varriale, A., et al., Localization of DNA sequences tightly associated with the synaptonemal complex in compositional fractions of the golden hamster genome, Mol. Biol. (Moscow), 2004, vol. 38, no. 4, pp. 561–567. doi 10.1023/B:MBIL.0000037008.83620.6f

    Article  CAS  Google Scholar 

  26. Sizova, T.V. and Karpova, O.I., Evolution conservatively of SCAR DNA localization in genome isochores of warm-blooded vertebrates, Mol. Biol. (Moscow), 2014, vol. 48, no. 3, pp. 347–350. doi 10.1134/S0026893314030194

    Article  CAS  Google Scholar 

  27. Heng, H.H.Q., Chamberlain, J.W., Shi, X.-M., et al., Regulation of meiotic chromatin loop size by chromosomal position, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 4, pp. 2795–2800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Costantini, M., Clay, O., Auletta, F., and Bernardi, G., An isochore map of human chromosomes, Genome Res., 2006, vol. 16, no. 4, pp. 536–541. doi 10.1101/gr.4910606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Costantini, M., Clay, O., Auletta, F., and Bernardi, G., Isochore and gene distribution in fish genomes, Genomics, 2007, vol. 90, pp. 364–371.

    Article  CAS  PubMed  Google Scholar 

  30. Saccone, S., De Sario, A., Della Valle, G., and Bernardi, G., The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, no. 11, pp. 4913–4917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saccone, S., De Sario, A., Wiegant, J.R., et al., Correlation between isochores and chromosomal bands in the human genome, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 12, pp. 11929–11933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  33. Penkina, M.V., Karpova, O.I., Zakharevich, N.V., et al., SCAR DNA family is enriched in evolutionarily conserved sequences, Mol. Biol. (Moscow), 2008, vol. 42, no. 2, article 321. doi 10.1134/S0026893308020192

    Article  CAS  Google Scholar 

  34. Bernardi, G., The neoselectionist theory of genome evolution, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 20, pp. 8385–8390. doi 10.1073/pnas.0701652104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duret, L., Mouchiroud, D., and Gautier, C., Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores, J. Mol. Evol., 1995, vol. 40, no. 3, pp. 308–317.

    Article  CAS  PubMed  Google Scholar 

  36. Mouchiroud, D., D’Onofrio, G., Aissani, B., et al., The distribution of genes in human genome, Gene, 1991, vol. 100, no. 4, pp. 181–187.

    Article  CAS  PubMed  Google Scholar 

  37. Lander, E.S., Linton, L.M., Birren, B., et al., Initial sequencing and analysis of the human genome, Nature, 2001, vol. 409, no. 2, pp. 860–921. doi 10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  38. Zoubak, S., D’Onofrio, G., Caccio, C., and Bernardi, G., Specific compositional patterns of synonymous positions in homologous mammalian genes, J. Mol. Evol., 1995, vol. 40, no. 3, pp. 293–307.

    Article  CAS  PubMed  Google Scholar 

  39. International Chicken Genome Sequencing Consortium, Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution, Nature, 2004, vol. 432, no. 12, pp. 695–716. doi 10.1038/nature03154

  40. Vinogradov, A.E., Isochores and tissue-specificity, Nucleic Acids Res., 2003, vol. 31, no. 17, pp. 5212–5220. doi 10.1093/nar/gkg699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holmquist, G.P., Chromosome bands, their chromatin flavors, and their functional features, Am. J. Hum. Genet., 1992, vol. 51, pp. 17–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jensen-Seaman, M.I., Furey, T.S., Payseur, B.A., et al., Comparative recombination rates in the rat, mouse, and human genomes, Genome Res., 2004, vol. 14, no. 4, pp. 528–538. doi 10.1101/gr.1970304

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Sizova.

Additional information

Original Russian Text © T.V. Sizova, O.I. Karpova, 2016, published in Genetika, 2016, Vol. 52, No. 11, pp. 1241–1248.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizova, T.V., Karpova, O.I. The length of chromatin loops in meiotic prophase I of warm-blooded vertebrates depends on the DNA compositional organization. Russ J Genet 52, 1124–1130 (2016). https://doi.org/10.1134/S1022795416110144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416110144

Keywords

Navigation