Skip to main content
Log in

Evolution of genetic diversity and human diseases

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The problem of development and dispersion of complex diseases in human populations requires new views, approaches, hypotheses, and paradigms. Evolutionary medicine provides one of the promising approaches to this problem, putting the disease into an evolutionary context. Unlike classic approaches oriented to proximate issues on structure and mechanisms of a disease, evolutionary considerations are broader. It provides the basis for understanding the origin, dispersion, and maintenance of the high frequencies of pathological phenotypes in modern human populations. In the current paper, we try to review the modern concepts on the evolution of human genetic diversity, to shape the outlines of evolutionary medicine, and to illustrate evolutionary medical problems using our experimental data. Data on genome-wide search for the signals of decanalization and adaptation in the human genome and on related biological processes and diseases are presented. Some hypotheses and concepts of evolutionary medicine may be productive for revealing the mechanisms of origin and dispersion of complex diseases and for pathogenetics of multifactorial diseases. One of such concepts is the hypothesis of decanalization of genome–phenome relationships under natural selection during modern human dispersion. Probably, the high frequency of alleles associated with complex diseases (and partially the high prevalence of diseases themselves) could be explained in the framework of the hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary. cgi

  2. The 1000 Genomes Project Consortium, An integrated map of genetic variation from 1092 human genomes, Nature, 2012, vol. 491, pp. 56–65.

  3. Manolio, T.A., Collins, F.S., Cox, N.J., et al., Finding the missing heritability of complex diseases, Nature, 2009, vol. 461, no. 7265, pp. 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, S.H., Wray, N.R., Goddard, M.E., and Visscher, P.M., Estimating missing heritability for disease from genome-wide association studies, Am. J. Hum. Genet., 2011, vol. 88, no. 3, pp. 294–305.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zuk, O., Hechter, E., Sunyaev, S.R., and Lander, E.S., The mystery of missing heritability: genetic interactions create phantom heritability, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 4, pp. 1193–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knox, S.S., From ‘omics’ to complex disease: a systems biology approach to gene–environment interactions in cancer, Cancer Cell Int., 2010, vol. 10:11.

  7. Chen, L. and Wu, J., Systems biology for complex diseases, J. Mol. Cell Biol., 2012, vol. 4, pp. 125–126.

    Article  PubMed  Google Scholar 

  8. Li, H., Systems biology approaches to epidemiological studies of complex diseases, WIREs Syst. Biol. Med., 2013, vol. 5, pp. 677–686.

    Article  Google Scholar 

  9. Puzyrev, V.P. and Kucher, A.N., Evolutionary ontogenetic aspects of pathogenetics of chronic human diseases, Russ. J. Genet., 2011, vol. 47, no. 12, pp. 1395–1405.

    Article  CAS  Google Scholar 

  10. Stepanov, V.A., Genomes, populations and diseases: ethnic genomics and personalized medicine, Acta Nat., 2010, no. 4, pp. 18–34.

    Google Scholar 

  11. Jobling, M., Hollox, E., Hurles, M., et al., Human Evolutionary Genetics, New York: Garland Science, 2014, 2nd ed.

    Google Scholar 

  12. Meyer, M., Kircher, M., Gansauge, M.-T., et al., A high-coverage genome sequence from an archaic Denisovan individual, Science, 2012, vol. 338, pp. 222–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prufer, K., Racimo, F., Patterson, N., et al., The complete genome sequence of a Neanderthal from the Altai Mountains, Nature, 2014, vol. 505, pp. 43–49.

    Article  PubMed  Google Scholar 

  14. Noonan, J.P., Neanderthal genomics and the evolution of modern humans, Genome Res., 2010, vol. 20, pp. 547–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stepanov, V.A., Ethnogenomics of North Eurasian Population, Tomsk: Pechatnaya Manufaktura, 2002.

    Google Scholar 

  16. Balaresque, P.L., Ballereau, S.J., and Jobling, M.A., Challenges in human genetic diversity: demographic history and adaptation, Hum. Mol. Genet., 2007, vol. 16, rev. issue 2, pp. R134–R139.

    Article  CAS  PubMed  Google Scholar 

  17. Wiuf, C., Do DF508 heterozygotes have a selective advantage?, Genet. Res., 2001, vol. 78, pp. 41–47.

    Article  CAS  PubMed  Google Scholar 

  18. Adeyemo, A. and Rotimi, C., Genetic variants associated with complex human diseases show wide variation across multiple populations, Public Health Genomics, 2010, vol. 12, pp. 72–79.

    Article  Google Scholar 

  19. Jobling, M.A., Hurles, M.E., and Tyler-Smith, C., Human Evolutionary Genetics: Origins, Peoples and Diseases, New York: Garland Publ., 2004.

    Google Scholar 

  20. Stepanov, V.A., Candelaria, P., Kho, S., et al., Decanalization of immune response during the dispersion of modern humans: the relationship of genetic diversity in the genes of the immune system with climatic and geographical factors, Med. Genet., 2013, vol. 12, no. 4, pp. 8–18.

    Google Scholar 

  21. Voight, B.F., Kudaravalli, S., Wen, X., and Pritchard, J.K., A map of recent positive selection in the human genome, PLoS Biol., 2006, vol. 4, pp. 446–458.

    Article  CAS  Google Scholar 

  22. Knowles, D.G. and McLysaght, A., Recent de novo origin of human protein-coding genes, Genome Res., 2009, vol. 19, pp. 1752–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hancock, A.M., Witonsky, D.B., Alkorta-Aranburu, G., et al., Adaptations to climate-mediated selective pressures in humans, PLoS Genet., 2011, vol. 7, pp. 1–16.

    Article  Google Scholar 

  24. Waddington, C.H., Canalization of development and the inheritance of acquired characters, Nature, 1942, vol. 150, pp. 563–565.

    Article  Google Scholar 

  25. Schmalhausen, I.I., Faktory evolyutsii (teoriya stabiliziruyushchego otbora) (Factors of Evolution: The Theory of Stabilizing Selection), Moscow: Akad. Nauk SSSR, 1946.

    Google Scholar 

  26. Schmalhausen, I.I., Factors of Evolution: The Theory of Stabilizing Selection, Philadelphia: Blakiston, 1949.

    Google Scholar 

  27. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003, 3rd ed.

    Google Scholar 

  28. Altukhov, Yu.P., Korochkin, L.I., and Rychkov, Yu.G., Hereditary biochemical diversity in evolution and development, Russ. J. Genet., 1996, vol. 32, no. 11, pp. 1256–1275.

    CAS  Google Scholar 

  29. Neel, J.V., Diabetes mellitus: a “trifty” genotype rendered detrimental by “progress”?, Am. J. Hum. Genet., 1962, vol. 14, pp. 353–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Neel, J.V., The “trifty” genotype in 1998, Nutr. Rev., 1998, vol. 57, pp. S2–S9.

    Article  Google Scholar 

  31. Di Rienzo, A., and Hudson, R.R., An evolutionary framework for common diseases: the ancestral-susceptibility model, Trends Genet., 2005, vol. 21, no. 11, pp. 596–601.

    Article  PubMed  Google Scholar 

  32. Gibson, G., Decanalization and the origin of complex disease, Nat. Rev. Genet., 2009, vol. 10, no. 2, pp. 134–140.

    Article  CAS  PubMed  Google Scholar 

  33. McGrath, J.J., Hannan, A.J., and Gibson, G., Decanalization, brain development and risk of schizophrenia, Transl. Psychiatry, 2011, vol. 1. e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scharloo, J., Canalization: genetic and developmental aspects, Annu. Rev. Ecol. Syst., 1991, vol. 22, pp. 65–93.

    Article  Google Scholar 

  35. Siegal, P. and Bergman, J., Waddington’s canalization revisited: developmental stability and evolution, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 16, pp. 10528–10532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bethony, J., Brooker, S., Albonico, M., et al., Soiltransmitted helminth infections: ascariasis, trichuriasis, and hookworm, Lancet, 2006, vol. 367, pp. 1521–1532.

    Article  PubMed  Google Scholar 

  37. WHO Expert Committee, Prevention and control of schistosomiasis and soil-transmitted helminthiasis, in World Health Organ Tech. Rep. Ser., Geneva, 2002.

  38. Hughes, R.G., Environmental influences on helminthiasis and nutritional status among Pacific schoolchildren, Int. J. Environ. Health Res., 2004, vol. 14, pp. 163–177.

    Article  CAS  PubMed  Google Scholar 

  39. Le Souef, P.N., Goldblatt, J., and Lynch, N.R., Evolutionary adaptation of inflammatory immune responses in human beings, Lancet, 2000, vol. 356, pp. 242–244.

    Article  PubMed  Google Scholar 

  40. http://geneticassociationdbnihgov/

  41. Mackenzie, P., Little, J.M., and Radominska-Pandya, A., Glucosidation of hyodeoxycholic acid by UDP-glucuronosyltransferase 2B7, Biochem. Pharmacol., 2003, vol. 65, pp. 417–421.

    Article  CAS  PubMed  Google Scholar 

  42. Fujita, K.I., Ando, Y., Yamamoto, W., et al., Association of UGT2B7 and ABCB1 genotypes with morphineinduced adverse drug reactions in Japanese patients with cancer, Cancer Chemother. Pharmacol., 2009, vol. 65, pp. 251–258.

    Article  Google Scholar 

  43. Rouguieg, K., Picard, N., Sauvage, F.L., et al., Contribution of the different UDP-glucuronosyltransferase (UGT) isoforms to buprenorphine and norbuprenorphine metabolism and relationship with the main UGT polymorphisms in a bank of human liver microsomes, Drug Metab. Dispos., 2010, vol. 38, pp. 40–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Stepanov.

Additional information

Original Russian Text © V.A. Stepanov, 2016, published in Genetika, 2016, Vol. 52, No. 7, pp. 852–864.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, V.A. Evolution of genetic diversity and human diseases. Russ J Genet 52, 746–756 (2016). https://doi.org/10.1134/S1022795416070103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416070103

Keywords

Navigation