Skip to main content
Log in

Fundamentally low reproducibility in molecular genetic cancer research

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review discusses the causes of multiple failures in cancer treatment, which might primarily result from the excessive variability of cancer genomes. They are capable of changing their spatial and temporal architecture during tumor development. The key reasons of irreproducibility of biomedical data and the presumable means for improvement of therapeutic results aiming at targeting the most stable tumor traits are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Varmus, H., The new era in cancer research, Science, 2006, vol. 312, no. 5777, pp. 1162–1165.

    Article  CAS  PubMed  Google Scholar 

  2. Morrison, W.B., Cancer chemotherapy: an annotated history, J. Vet. Int. Med., 2010, vol. 24, no. 6, pp. 1249–1262. doi 10.1111/j.1939-1676.2010.0590x

    Article  CAS  Google Scholar 

  3. Vidal, M., Cusick, M.E., and Barabasi, A.L., Interactome networks and human disease, Cell, 2011, vol. 144, no. 6, pp. 986–998. doi 10.1016/jcell.2011.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sawyers, C.L., The cancer biomarker problem, Nature, 2008, vol. 452, no. 7187, pp. 548–552. doi 10.1038/nature06913

    Article  CAS  PubMed  Google Scholar 

  5. Janes, H., Pepe, M.S., McShane, L.M., et al., The fundamental difficulty with evaluating the accuracy of biomarkers for guiding treatment, J. Natl. Cancer Inst., 2015, vol. 107, no. 8, p. pii: djv157. doi 10.1093/jnci/ djv15710.1093/jnci/djv157

    Article  Google Scholar 

  6. Saquib, N., Saquib, J., and Ioannidis, J.P., Does screening for disease save lives in asymptomatic adults? Systematic review of meta-analyses and randomized trials, Int. J. Epidemiol., 2015, vol. 44, no. 1, pp. 264–277. doi 10.1093/ije/dyu140

    Article  PubMed  Google Scholar 

  7. Taylor, P., Commentary: tempering expectations of screening: what is the most authoritative advice we can give, given the data that we have?, Int. J. Epidemiol., 2015, vol. 44, no. 1, pp. 280–282. doi 10.1093/ije/ dyu269

    Article  PubMed  Google Scholar 

  8. McShane, L.M., Cavenagh, M.M., Lively, T.G., et al., Criteria for the use of omics-based predictors in clinical trials, Nature, 2013, vol. 502, no. 7471, pp. 317–320. doi 10.1038/nature12564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bedard, P.L., Hansen, A.R., Ratain, M.J., and Siu, L.L., Tumour heterogeneity in the clinic, Nature, 2013, vol. 501, no. 7467, pp. 355–364. doi 10.1038/nature12627

  10. Kreso, A., O’Brien, C.A., van Galen, P., et al., Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer, Science, 2013, vol. 339, no. 6119, pp. 543–548. doi 10.1126/science. 1227670

    Article  CAS  PubMed  Google Scholar 

  11. Burrell, R.A. and Swanton, C., The evolution of the unstable cancer genome, Curr. Opin. Genet. Dev., 2013, vol. 24, pp. 61–67. doi 10.1016/jgde.2013.11.011

    Article  PubMed  CAS  Google Scholar 

  12. Sverdlov, E.D., Systems biology and personalized medicine: to be or not to be?, Ross. Fiziol. Zh. im. I.M. Sechenova, 2014, vol. 100, no. 5, pp. 505–541.

    CAS  PubMed  Google Scholar 

  13. Cao, W., Wu, W., Yan, M., et al., Multiple region whole-exome sequencing reveals dramatically evolving intratumor genomic heterogeneity in esophageal squamous cell carcinoma, Oncogenesis, 2015, vol. 4. e175. doi 10.1038/oncsis.2015.34

    CAS  Google Scholar 

  14. Barber, L.J., Davies, M.N., and Gerlinger, M., Dissecting cancer evolution at the macro-heterogeneity and micro-heterogeneity scale, Curr. Opin. Genet. Dev., 2015, vol. 30, pp. 1–6. doi 10.1016/jgde. 2014.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ostrow, S.L., Barshir, R., DeGregori, J., et al., Cancer evolution is associated with pervasive positive selection on globally expressed genes, PLoS Genet., 2014, vol. 10, no. 3. e1004239. doi 10.1371/journal. pgen.1004239

    Article  CAS  Google Scholar 

  16. Burrell, R.A. and Swanton, C., Tumour heterogeneity and the evolution of polyclonal drug resistance, Mol. Oncol., 2014, vol. 8, no. 6, pp. 1095–1111. doi 10.1016/jmolonc.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  17. Prudkin, L. and Nuciforo, P., Obstacles to precision oncology: confronting current factors affecting the successful introduction of biomarkers to the clinic, Cell Oncol. (Dordr.), 2014, vol. 38, no. 1, pp. 39–48. doi 10.1007/s13402-014-0192-6

  18. Zardavas, D., Irrthum, A., Swanton, C., and Piccart, M., Clinical management of breast cancer heterogeneity, Nat. Rev. Clin. Oncol., 2015, vol. 12, no. 7, pp. 381–394. doi 10.1038/nrclinonc.2015.73

    Article  CAS  PubMed  Google Scholar 

  19. Kim, T.M., Jung, S.H., An, C.H., et al., Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity, Clin. Cancer Res., 2015, vol. 21, no. 19, pp. 4461–4472. doi 10.1158/1078-0432.CCR-14-2413

    Article  CAS  PubMed  Google Scholar 

  20. Ioannidis, J.P., Expectations, validity, and reality in omics, J. Clin. Epidemiol., 2010, vol. 63, no. 9, pp. 945–949. doi 10.1016/jjclinepi.2010.04.002

    Article  PubMed  Google Scholar 

  21. Kern, S.E., Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures, Cancer Res., 2012, vol. 72, no. 23, pp. 6097–6101. doi 10.1158/0008-5472.CAN-12-3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Begley, C.G. and Ellis, L.M., Drug development: raise standards for preclinical cancer research, Nature, 2012, vol. 483, no. 7391, pp. 531–533. doi 10.1038/483531a

    Article  CAS  PubMed  Google Scholar 

  23. Kaiser, J., The cancer test, Science, 2015, vol. 348, no. 6242, pp. 1411–1413. doi 10.1126/science.348. 6242.1411

    Article  CAS  PubMed  Google Scholar 

  24. Begley, C.G. and Ioannidis, J.P., Reproducibility in science: improving the standard for basic and preclinical research, Circ. Res., 2015, vol. 116, no. 1, pp. 116–126. doi 10.1161/CIRCRESAHA.114.303819

    Article  CAS  PubMed  Google Scholar 

  25. Weiss, K., Seeing the forest through the gene-trees: what is the pattern in the human genome and what does it mean?, Evol. Anthropol., 2010, vol. 19, pp. 210–221. doi 10.1002/evan.20286

    Article  Google Scholar 

  26. Pammolli, F., Magazzini, L., and Riccaboni, M., The productivity crisis in pharmaceutical R&D, Nat. Rev. Drug Discov., 2011, vol. 10, no. 6, pp. 428–438. doi 10.1038/nrd3405

    Article  CAS  PubMed  Google Scholar 

  27. Sams-Dodd, F., Is poor research the cause of the declining productivity of the pharmaceutical industry?, An industry in need of a paradigm shift, Drug Discov Today, 2013, vol. 18, no. 5–6, pp. 211–217. doi 10.1016/jdrudis.2012.10.010

    Article  PubMed  Google Scholar 

  28. Bria, E., Di Maio, M., Carlini, P., et al., Targeting targeted agents: open issues for clinical trial design, J. Exp. Clin. Cancer Res., 2009, vol. 28, p. 66. doi 10.1186/1756-9966-28-66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Duenas-Gonzalez, A., Garcia-Lopez, P., Herrera, L.A., et al., The prince and the pauper: a tale of anticancer targeted agents, Mol. Cancer, 2008, vol. 7, p. 82. doi 10.1186/1476-4598-7-82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sverdlov, E.D., Not gene therapy, but genetic surgery–the right strategy to attack cancer, Mol. Genet. Microbiol. Virol., 2009, vol. 24, no. 3, pp. 93–113. doi 10.3103/S089141680903001X

    Article  Google Scholar 

  31. Sverdlov, E.D., Genetic surgery–a right strategy to attack cancer, Curr. Gene Ther., 2011, vol. 11, no. 6, pp. 501–531.

    Article  CAS  PubMed  Google Scholar 

  32. Druker, B.J., Imatinib: paradigm or anomaly?, Cell Cycle, 2004, vol. 3, no. 7, pp. 833–835.

    Article  CAS  PubMed  Google Scholar 

  33. Medina-Franco, J.L., Giulianotti, M.A., Welmaker, G.S., and Houghten, R.A., Shifting from the single to the multitarget paradigm in drug discovery, Drug Discov. Today, 2013, vol. 18, no. 9–10, pp. 495–501. doi 10.1016/jdrudis.2013.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stock, J.K., Jones, N.P., Hammonds, T., et al., Addressing the right targets in oncology: challenges and alternative approaches, J. Biomol. Screen., 2015, vol. 20, no. 3, pp. 305–317. doi 10.1177/ 1087057114564349

    Article  PubMed  Google Scholar 

  35. Salk, J.J., Fox, E.J., and Loeb, L.A., Mutational heterogeneity in human cancers: origin and consequences, Annu. Rev. Pathol., 2010, vol. 5, pp. 51–75. doi 10.1146/annurev-pathol-121808-102113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. NCI, Targeted Cancer Therapies, 2010. http://wwwcancergov/cancertopics/factsheet/Therapy/targeted

  37. Bixby, D. and Talpaz, M., Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia, Leukemia, 2010, vol. 25, no. 1, pp. 7–22. doi 10.1038/leu.2010.238

    Article  PubMed  CAS  Google Scholar 

  38. Esteva, F., Molecular mechanisms of resistance to HER2-targeted therapy, Breast Cancer Res., 2009, 11 Suppl. 1.

    Google Scholar 

  39. Hambley, T.W. and Hait, W.N., Is anticancer drug development heading in the right direction?, Cancer Res., 2009, vol. 69, no. 4, pp. 1259–1262. doi 10.1158/0008-5472.CAN-08-3786

    Article  CAS  PubMed  Google Scholar 

  40. Hellerstein, M.K., A critique of the molecular targetbased drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery, Metab. Eng., 2008, vol. 10, no. 1, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  41. Hojjat-Farsangi, M., Novel and emerging targetedbased cancer therapy agents and methods, Tumour Biol., 2015, vol. 36, no. 2, pp. 543–556. doi 10.1007/s13277-015-3184-x

    Article  CAS  PubMed  Google Scholar 

  42. Park, S.R., Davis, M., Doroshow, J.H., and Kummar, S., Safety and feasibility of targeted agent combinations in solid tumours, Nat. Rev. Clin. Oncol., 2013, vol. 10, no. 3, pp. 154–168. doi 10.1038/nrclinonc.2012.245

    Article  CAS  PubMed  Google Scholar 

  43. Sell, S., Potential gene therapy strategies for cancer stem cells, Curr. Gene Ther., 2006, vol. 6, no. 5, pp. 579–591.

    Article  CAS  PubMed  Google Scholar 

  44. Pavet, V., Portal, M.M., Moulin, J.C., et al., Towards novel paradigms for cancer therapy, Oncogene, 2010, vol. 30, no. 1, pp. 1–20. doi 10.1038/onc.2010.460

    Article  PubMed  CAS  Google Scholar 

  45. Cirstea, D., Vallet, S., and Raje, N., Future novel single agent and combination therapies, Cancer J., 2009, vol. 15, no. 6, pp. 511–518. doi 10.1097/PPO.0b013e3181c51c8e

    Article  CAS  PubMed  Google Scholar 

  46. Petrelli, A. and Valabrega, G., Multitarget drugs: the present and the future of cancer therapy, Expert Opin. Pharmacother., 2009, vol. 10, no. 4, pp. 589–600. doi 10.1517/14656560902781907

    Article  CAS  PubMed  Google Scholar 

  47. Heng, H.H., The conflict between complex systems and reductionism, JAMA, 2008, vol. 300, no. 13, pp. 1580–1581. doi 10.1001/jama.300.13.1580

    Article  CAS  PubMed  Google Scholar 

  48. Heng, H.H., Bremer, S.W., Stevens, J.B., et al., Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective, J. Cell Physiol., 2009, vol. 220, no. 3, pp. 538–547. doi 10.1002/jcp.21799

    Article  CAS  PubMed  Google Scholar 

  49. Van Regenmortel, M.H., Reductionism and complexity in molecular biology: scientists now have the tools to unravel biological and overcome the limitations of reductionism, EMBO Rep., 2004, vol. 5, no. 11, pp. 1016–1020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Weinberg, R., Point: hypotheses first, Nature, 2010, vol. 464, no. 7289, p. 678. doi 10.1038/464678a

    Article  CAS  PubMed  Google Scholar 

  51. Cohen, J.P., Roadblocks preventing personalized medicine from reaching its potential, Biomark Med., 2015, vol. 9, no. 1, pp. 5–8. doi 10.2217/bmm.14.66

    Article  CAS  PubMed  Google Scholar 

  52. Mallick, P., Complexity and information: cancer as a multi-scale complex adaptive system, in Physical Sciences and Engineering Advances in Life Sciences and Oncology, Springer-Verlag, 2015, pp. 5–29.

    Google Scholar 

  53. Suki, B., Bates, J.H., and Frey, U., Complexity and emergent phenomena, Comp. Physiol., 2011, vol. 1, no. 2, pp. 995–1029. doi 10.1002/cphyc100022

    Google Scholar 

  54. Mazzocchi, F., Complexity and the reductionism–holism debate in systems biology, Wiley Interdiscip. Rev. Syst. Biol. Med., 2012, vol. 4, no. 5, pp. 413–427. doi 10.1002/wsbm.1181

    Article  CAS  PubMed  Google Scholar 

  55. Rickles, D., Hawe, P., and Shiell, A., A simple guide to chaos and complexity, J. Epidemiol. Comm. Health, 2007, vol. 61, no. 11, pp. 933–937.

    Article  Google Scholar 

  56. Wagner, A., Robustness, evolvability, and neutrality, FEBS Lett., 2005, vol. 579, no. 8, pp. 1772–1778.

    Article  CAS  PubMed  Google Scholar 

  57. Wagner, A., Robustness and evolvability: a paradox resolved, Proc. Biol. Sci., 2008, vol. 275, no. 1630, pp. 91–100.

    Article  PubMed  Google Scholar 

  58. Noble, D., A biological relativity view of the relationships between genomes and phenotypes, Prog. Biophys. Mol. Biol., 2013, vol. 111, no. 2–3, pp. 59–65. doi 10.1016/jpbiomolbio.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  59. Kitano, H., Biological robustness, Nat. Rev. Genet., 2004, vol. 5, no. 11, pp. 826–837.

    Article  CAS  PubMed  Google Scholar 

  60. Kitano, H., Cancer as a robust system: implications for anticancer therapy, Nat. Rev. Cancer, 2004, vol. 4, no. 3, pp. 227–235.

  61. Merlo, L.M., Pepper, J.W., Reid, B.J., and Maley, C.C., Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, 2006, vol. 6, no. 12, pp. 924–935.

    Article  CAS  PubMed  Google Scholar 

  62. Wood, L.D., Parsons, D.W., Jones, S., et al., The genomic landscapes of human breast and colorectal cancers, Science, 2007, vol. 318, no. 5853, pp. 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  63. Hanahan, D. and Weinberg, R.A., The hallmarks of cancer, Cell, 2000, vol. 100, no. 1, pp. 57–70.

  64. Hanahan, D. and Weinberg, R.A., Hallmarks of cancer: the next generation, Cell, 2011, vol. 144, no. 5, pp. 646–674. doi 10.1016/jcell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  65. Alison, M.R., Lin, W.R., Lim, S.M., and Nicholson, L.J., Cancer stem cells: in the line of fire, Cancer Treat. Rev., 2012, vol. 38, no. 6, pp. 589–598. doi 10.1016/jctrv.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  66. Tomasetti, C., Marchionni, L., Nowak, M.A., Parmigiani, G., et al., Only three driver gene mutations are required for the development of lung and colorectal cancers, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 1, pp. 118–123. doi 10.1073/pnas.1421839112

    Article  CAS  PubMed  Google Scholar 

  67. Tomasetti, C. and Vogelstein, B., Cancer etiology: variation in cancer risk among tissues can be explained by the number of stem cell divisions, Science, 2015, vol. 347, no. 6217, pp. 78–81. doi 10.1126/science. 1260825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sverdlov, E.D. and Mineev, K., Mutation rate in stem cells: an underestimated barrier on the way to therapy, Trends Mol. Med., 2013, vol. 19, no. 5, pp. 273–280. doi 10.1016/jmolmed.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  69. Swanton, C., McGranahan, N., Starrett, G.J., and Harris, R.S., APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity, Cancer Discov., 2015, vol. 5, no. 7, pp. 704–712. doi 10.1158/2159- 8290.CD-15-0344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roberts, S.A. and Gordenin, D.A., Clustered and genome-wide transient mutagenesis in human cancers: hypermutation without permanent mutators or loss of fitness, Bioessays, 2014, vol. 36, no. 4, pp. 382–393. doi 10.1002/bies.201300140

    Article  CAS  Google Scholar 

  71. Chan, K. and Gordenin, D.A., Clusters of multiple mutations: incidence and molecular mechanisms, Annu. Rev. Genet., 2015, vol. 49, pp. 243–267. doi 10.1146/annurev-genet-112414-054714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gerlinger, M., McGranahan, N., Dewhurst, S.M., et al., Cancer: evolution within a lifetime, Annu. Rev. Genet., 2014, vol. 48, pp. 215–236. doi 10.1146/annurev-genet-120213-092314

    Article  CAS  PubMed  Google Scholar 

  73. Kazanov, M.D., Roberts, S.A., Polak, P., et al., APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions, Cell Rep., 2015, vol. 13, no. 6, pp. 1103–1109. doi 10.1016/jcelrep.2015.09.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roberts, S.A. and Gordenin, D.A., Hypermutation in human cancer genomes: footprints and mechanisms, Nat. Rev. Cancer, 2014, vol. 14, no. 12, pp. 786–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Polak, P., Karlic, R., Koren, A., et al., Cell-of-origin chromatin organization shapes the mutational landscape of cancer, Nature, 2015, vol. 518, no. 7539, pp. 360–364. doi 10.1038/nature14221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martincorena, I. and Campbell, P.J., Somatic mutation in cancer and normal cells, Science, 2015, vol. 349, no. 6255, pp. 1483–1489. doi 10.1126/science. aab4082

    Article  CAS  PubMed  Google Scholar 

  77. Bielas, J.H., Loeb, K.R., Rubin, B.P., et al., Human cancers express a mutator phenotype, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 48, pp. 18238–18242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Beerenwinkel, N., Antal, T., Dingli, D., et al., Genetic progression and the waiting time to cancer, PLoS Comput. Biol., 2007, vol. 3, no. 11. e225.

    Article  CAS  Google Scholar 

  79. Prindle, M.J., Fox, E.J., and Loeb, L.A., The mutator phenotype in cancer: molecular mechanisms and targeting strategies, Curr. Drug Targets, 2010, vol. 11, no. 10, pp. 1296–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tomlinson, I., Sasieni, P., and Bodmer, W., How many mutations in a cancer?, Am. J. Pathol., 2002, vol. 160, no. 3, pp. 755–758.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sverdlov, E.D., Pleshkan, V.V., Alekseenko, I.V. et al., Adult stem cells and other cancer residents: part I, Mol. Genet., Microbiol. Virol., 2015, vol. 30, no. 3, pp. 107–113.

    Article  Google Scholar 

  82. Beckman, R.A. and Loeb, L.A., Efficiency of carcinogenesis with and without a mutator mutation, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 38, pp. 14140–14145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sieber, O., Heinimann, K., and Tomlinson, I., Genomic stability and tumorigenesis, Semin. Cancer Biol., 2005, vol. 15, no. 1, pp. 61–66.

    Article  CAS  PubMed  Google Scholar 

  84. Heitzer, E. and Tomlinson, I., Replicative DNA polymerase mutations in cancer, Curr. Opin. Genet. Dev., 2014, vol. 24, pp. 107–113. doi 10.1016/jgde.2013.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sohl, C.D., Ray, S., and Sweasy, J.B., Pools and pols: mechanism of a mutator phenotype, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 19, pp. 5864–5865. doi 10.1073/pnas.1505169112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schlesner, M. and Eils, R., Hypermutation takes the driver’s seat, Genome Med., 2015, vol. 7, no. 1, p. 31. doi 10.1186/s13073-015-0159-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Shlien, A., Campbell, B.B., de Borja, R., et al., Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers, Nat. Genet., 2015, vol. 47, no. 3, pp. 257–262. doi 10.1038/ng.3202

    Article  CAS  PubMed  Google Scholar 

  88. Glazier, A., An inconvenient truth: cancer is a hugely diverse, complex, unpredictable, non-linear, stochastic evolutionary process, 2007. http://wwwcurecancerproject. org/beta/pdf/An%20Inconvenient%20 Truth,%20Cancer%20is%20a%20hugely%20diverse% 20-complex%20stochastic%20evolutionary%20process. pdfess

    Google Scholar 

  89. McAdams, H.H. and Arkin, A., It’s a noisy business! Genetic regulation at the nanomolar scale, Trends Genet., 1999, vol. 15, no. 2, pp. 65–69.

    Article  CAS  PubMed  Google Scholar 

  90. Eldar, A. and Elowitz, M.B., Functional roles for noise in genetic circuits, Nature, 2010, vol. 467, no. 7312, pp. 167–173. doi 10.1038/nature09326

  91. Brock, A., Krause, S., and Ingber, D.E., Control of cancer formation by intrinsic genetic noise and microenvironmental cues, Nat. Rev. Cancer, 2015, vol. 15, no. 8, pp. 499–509. doi 10.1038/nrc3959

    Article  CAS  PubMed  Google Scholar 

  92. Suva, M.L., Riggi, N., and Bernstein, B.E., Epigenetic reprogramming in cancer, Science, 2013, vol. 339, no. 6127, pp. 1567–1570. doi 10.1126/science.1230184

    Article  CAS  PubMed  Google Scholar 

  93. Stadler, M., Walter, S., Walzl, A., et al., Increased complexity in carcinomas: analyzing and modeling the interaction of human cancer cells with their microenvironment, Semin. Cancer Biol., 2015, vol. 35, pp. 107–124. doi doi 10.1016/jsemcancer.2015.08.007

    Article  PubMed  Google Scholar 

  94. Heng, H.H., Stevens, J.B., Bremer, S.W., et al., The evolutionary mechanism of cancer, J. Cell Biochem., 2010, vol. 109, no. 6, pp. 1072–1084. doi 10.1002/jcb.22497

    CAS  PubMed  Google Scholar 

  95. Vogelstein, B. and Kinzler, K.W., The path to cancer–three strikes and you’re out, N. Engl. J. Med., 2015, vol. 373, no. 20, pp. 1895–1898. doi 10.1056/NEJMp1508811

    Article  PubMed  Google Scholar 

  96. Tomasetti, C., Vogelstein, B., and Parmigiani, G., Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 6, pp. 1999–2004. doi 10.1073/pnas.1221068110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., et al., Cancer genome landscapes, Science, 2013, vol. 339, no. 6127, pp. 1546–1558. doi 10.1126/science. 1235122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hainaut, P. and Plymoth, A., Editorial: from cancer genotypes to phenotypes: a never-ending complexity, Curr. Opin. Oncol., 2015, vol. 28, no. 1, pp. 50–61. doi 10.1097/CCO.0000000000000256

    Article  Google Scholar 

  99. Nordling, C.O., A new theory on cancer-inducing mechanism, Br. J. Cancer, 1953, vol. 7, no. 1, pp. 68–72. doi doi 10.1038/bjc.1953.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Armitage, P. and Doll, R., The age distribution of cancer and a multi-stage theory of carcinogenesis, Br. J. Cancer, 1954, vol. 8, no. 1, pp. 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vinogradova, T.V., Chernov, I.P., Monastyrskaya, G.S., et al., Cancer stem cells: plasticity works against therapy, Acta Nat., 2015, vol. 7, no. 4, pp. 46–55.

    CAS  Google Scholar 

  102. Bhowmick, N.A., Neilson, E.G., and Moses, H.L., Stromal fibroblasts in cancer initiation and progression, Nature, 2004, vol. 432, no. 7015, pp. 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kalluri, R. and Zeisberg, M., Fibroblasts in cancer, Nat. Rev. Cancer, 2006, vol. 6, no. 5, pp. 392–401.

    Article  CAS  PubMed  Google Scholar 

  104. Potter, J.D. and Prentice, R.L., Cancer risk: tumors excluded, Science, 2015, vol. 347, no. 6223, p. 727. doi 10.1126/scienceaaa6507

    Article  CAS  PubMed  Google Scholar 

  105. Prahallad, A. and Bernards, R., Opportunities and challenges provided by crosstalk between signalling pathways in cancer, Oncogene, 2015, vol. 35, no. 9, pp. 1073–1079. doi 10.1038/onc.2015.151

    Article  PubMed  CAS  Google Scholar 

  106. Kinzler, K.W. and Vogelstein, B., Landscaping the cancer terrain, Science, 1998, vol. 280, no. 5366, pp. 1036–1037.

    Article  CAS  PubMed  Google Scholar 

  107. Tsai, J.H. and Yang, J., Epithelial-mesenchymal plasticity in carcinoma metastasis, Genes Dev., 2013, vol. 27, no. 20, pp. 2192–2206. doi 10.1101/gadv 225334.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rhim, A.D., Epithelial to mesenchymal transition and the generation of stem-like cells in pancreatic cancer, Pancreatology, 2013, vol. 13, no. 2, pp. 114–117. doi 10.1016/jpan.2013.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Scheel, C. and Weinberg, R.A., Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links, Semin. Cancer Biol., 2012. doi 10.1016/jsemcancer.2012.04.001

    Google Scholar 

  110. Tabassum, D.P. and Polyak, K., Tumorigenesis: it takes a village, Nat. Rev. Cancer, 2015, vol. 15, no. 8, pp. 473–483. doi 10.1038/nrc3971

    Article  CAS  PubMed  Google Scholar 

  111. Halsey, L.G., Curran-Everett, D., Vowler, S.L., and Drummond, G.B., The fickle P value generates irreproducible results, Nat. Methods, 2015, vol. 12, no. 3, pp. 179–185. doi 10.1038/nmeth.3288

    Article  CAS  PubMed  Google Scholar 

  112. Simpson, G.G., Organisms and molecules in evolution, Science, 1964, vol. 146, no. 3651, pp. 1535–1538.

    Article  CAS  PubMed  Google Scholar 

  113. Harms, M.J. and Thornton, J.W., Evolutionary biochemistry: revealing the historical and physical causes of protein properties, Nat. Rev. Genet., 2013, vol. 14, no. 8, pp. 559–571. doi 10.1038/nrg3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Horne, S.D., Pollick, S.A., and Heng, H.H., Evolutionary mechanism unifies the hallmarks of cancer, Int. J. Cancer, 2015, vol. 136, no. 9, pp. 2012–2021. doi 10.1002/ijc.29031

    Article  CAS  PubMed  Google Scholar 

  115. McIntosh, H., 25 years ahead: will cancer be a “background- noise kind of disease”?, J. Natl. Cancer. Inst., 1996, vol. 88, no. 24, pp. 1794–1978.

    Article  Google Scholar 

  116. Garg, A., Maes, H., and van Vliet, A., Targeting the hallmarks of cancer with therapy induced endoplasmic reticulum (ER) stress, Mol. Cell. Oncol., 2015, vol. 2, no. 1. e975089.

    Article  CAS  Google Scholar 

  117. Alekseenko, I.V., Snezhkov, E.V., Chernov, I.P., et al., Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer, J. Transl. Med., 2015, vol. 13, p. 78. doi 10.1186/s12967-015-0433-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, 2012, vol. 12, no. 4, pp. 252–264. doi doi 10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sharma, P. and Allison, J.P., Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential, Cell, 2015, vol. 161, no. 2, pp. 205–214. doi 10.1016/jcell.2015.03.030

    Article  CAS  PubMed  Google Scholar 

  120. Azam, F., Mehta, S., and Harris, A.L., Mechanisms of resistance to antiangiogenesis therapy, Eur. J. Cancer, 2010, vol. 46, no. 8, pp. 1323–1332. doi 10.1016/jejca.2010.02.020

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Alekseenko.

Additional information

Original Russian Text © I.V. Alekseenko, V.V. Pleshkan, G.S. Monastyrskaya, A.I. Kuzmich, E.V. Snezhkov, D.A. Didych, E.D. Sverdlov, 2016, published in Genetika, 2016, Vol. 52, No. 7, pp. 745–760.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseenko, I.V., Pleshkan, V.V., Monastyrskaya, G.S. et al. Fundamentally low reproducibility in molecular genetic cancer research. Russ J Genet 52, 650–663 (2016). https://doi.org/10.1134/S1022795416070036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416070036

Keywords

Navigation