Russian Journal of Genetics

, Volume 52, Issue 8, pp 780–793 | Cite as

Phylogenetic relationships of the species of Oxytropis DC. subg. Oxytropis and Phacoxytropis (Fabaceae) from Asian Russia inferred from the nucleotide sequence analysis of the intergenic spacers of the chloroplast genome

  • A. B. Kholina
  • M. M. Kozyrenko
  • E. V. Artyukova
  • D. V. Sandanov
  • E. A. Andrianova
Plant Genetics

Abstract

The nucleotide sequence analysis of trnHpsbA, trnLtrnF, and trnStrnG intergenic spacer regions of chloroplast DNA performed in the representatives of the genus Oxytropis from Asian Russia provided clarification of the phylogenetic relationships of some species and sections in the subgenera Oxytropis and Phacoxytropis and in the genus Oxytropis as a whole. Only the section Mesogaea corresponds to the subgenus Phacoxytropis, while the section Janthina of the same subgenus groups together with the sections of the subgenus Oxytropis. The sections Chrysantha and Ortholoma of the subgenus Oxytropis are not only closely related to each other, but together with the section Mesogaea, they are grouped into the subgenus Phacoxytropis. It seems likely that the sections Chrysantha and Ortholoma should be assigned to the subgenus Phacoxytropis, and the section Janthina should be assigned to the subgenus Oxytropis. The molecular differences were identified between O. coerulea and O. mandshurica from the section Janthina that were indicative of considerable divergence of their chloroplast genomes and the species independence of the taxa. The species independence of O. czukotica belonging to the section Arctobia was also confirmed.

Keywords

Oxytropis Fabaceae phylogenetic relationships intergenic spacers chloroplast DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu, X., Welsh, S.L., and Ohashi, H., Oxytropis, Flora of China, Wu, Z.-Y., et al., Eds., 2010, vol. 10, pp. 453–500. http://wwweflorasorgGoogle Scholar
  2. 2.
    Malyshev, L.I., Phenetics of the subgenera and sections in the genus Oxytropis DC.(Fabaceae) related to the ecology and phylogeny, Contemp. Probl. Ecol., 2008, no. 4, pp. 571–576. doi 10.1134/S1995425508040073Google Scholar
  3. 3.
    Yurtsev, B.A., Oxytropis DC., Arkticheskaya flora SSSR (Arctic Flora of the Soviet Union), Yurtsev, B.A., Ed., Leningrad: Nauka, 1986, no. 9, part 2, pp. 61–146.Google Scholar
  4. 4.
    Pavlova, N.S., Legumes—Fabaceae, in Sosudistye rasteniya sovetskogo Dal’nego Vostoka (Vascular Plants of the Soviet Far East), Kharkevich, S.S., Eds., Leningrad: Nauka, 1989, vol. 4, pp. 191–339.Google Scholar
  5. 5.
    Polozhii, A.V., Oxytropis DC., in Flora Sibiri (Flora of Siberia), Polozhii, A.V. and Malyshev, L.I., Eds., Novosibirsk: Nauka, 1994, vol. 9, pp. 74–151.Google Scholar
  6. 6.
    Malyshev, L.I., Diversity of the genus Oxytropis in Asian Russia, Turczaninowia, 2008, vol. 11, no. 4, pp. 5–141.Google Scholar
  7. 7.
    Polozhii, A.V., Oxytropis (Fabaceae) species in the mountain flora of South Siberia, Bot. Zh., 1995, vol. 80, no. 10, pp. 58–66.Google Scholar
  8. 8.
    Bunge, Al., Species generis Oxytropis DC., Mem. Acad. Sci. Petersb. (Sci. Phys. Math.) Ser., 1874, vol. 22, no. 1, p. 166.Google Scholar
  9. 9.
    Vasil’chenko, I.T., Fedchenko, B.A., and Shishkin, B.K., Genus Oxytropis, in Flora SSSR (Flora of the Soviet Union), Shishkin, B.K. and Bobrov, E.G., Eds., Moscow: Akad. Nauk SSSR, 1948, vol. 13, pp. 1–229.Google Scholar
  10. 10.
    Grubov, V.I. Rasteniya, Tsentral’noi Azii, issue 8b: Rod ostrolodochnik (Genus Oxytropis), St. Petersburg: Mir i Sem’ya, 1998.Google Scholar
  11. 11.
    Malyshev, L.I., Phenetics in the section Verticillares, genus Oxytropis (Fabaceae), Bot. Zh., 2007, vol. 92, no. 6, pp. 793–807.Google Scholar
  12. 12.
    Kazempour Osaloo, S., Maassoumi, A.A., and Murakami, N., Molecular systematics of the genus Astragalus L. (Fabaceae): phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacers and chloroplast gene ndhF sequences, Plant Syst. Evol., 2003, vol. 242, pp. 1–32. doi 10.1007/s00606-003-0014-1CrossRefGoogle Scholar
  13. 13.
    Kazempour Osaloo S., Maassoumi, A.A., and Murakami, N., Molecular systematics of the Old World Astragalus (Fabaceae) as inferred from nrDNA ITS sequence data, Brittonia, 2005, vol. 57, no. 4, pp. 367–381. doi http://dxdoiorg/doi 10.1663/0007-196X(2005)057[0367:MSOTOW]2.0.CO;2CrossRefGoogle Scholar
  14. 14.
    Wojciechowski, M.F., Astragalus (Fabaceae): a molecular phylogenetic perspective, Brittonia, 2005, vol. 57, no. 4, pp. 382–396. doi http://dxdoiorg/doi 10.1663/0007-196X(2005)057[0382:AFAMPP]2.0.CO;2CrossRefGoogle Scholar
  15. 15.
    Bartha, L., Dragos, N., Molnar, A., and Sramko, G., Molecular evidence for reticulate speciation in Astragalus (Fabaceae) as revealed by a case study from sect. Dissitiflori, Botany, 2013, vol. 91, pp. 702–714. doi 10.1139/cjb-2013-0036CrossRefGoogle Scholar
  16. 16.
    Gao, T., Ma, X., and Zhu, X., Use the psbA-trnH region to authenticate medicinal species of Fabaceae, Biol. Pharm. Bull., 2013, vol. 36, no. 12, pp. 1975–1979.CrossRefPubMedGoogle Scholar
  17. 17.
    Archambault, A. and Stromvik, M.V., Evolutionary relationships in Oxytropis species, as estimated from the nuclear ribosomal internal transcribed spacer (ITS) sequences point to multiple expansions into the Arctic, Botany, 2012, vol. 90, no. 8, pp. 770–779. doi 10.1139/B2012-023Google Scholar
  18. 18.
    Gao, L., Lu, P., Jin, F., et al., TrnL-F sequences analysis and molecular phylogeny of 10 species of Oxytropis, Acta Bot. Boreali-Occident. Sin., 2013, no. 2, pp. 266–271.Google Scholar
  19. 19.
    Lu, P., Gao, L., Jin, F., and Enhebayaer, E., Molecular phylogeny of 10 species of Oxytropis based on psbA-trnH sequences, Acta Bot. Yunnanica, 2014, no. 3, pp. 279–284.Google Scholar
  20. 20.
    Artyukova, E.V. and Kozyrenko, M.M., Phylogenetic relationships of Oxytropis chankaensis Jurtz. and Oxytropis oxyphylla (Pall.) DC. (Fabaceae) inferred from the data of sequencing of the ITS region of the nuclear ribosomal DNA operon and intergenic spacers of the chloroplast genome, Russ. J. Genet., 2012, vol. 48, no. 2, pp. 186–193. doi 10.1134/Sl022795411110032CrossRefGoogle Scholar
  21. 21.
    Doyle, J.J., Doyle, J.L., Rauscher, J.T., and Brown, A.H.D., Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans (Glycine subgenus Glycine), New Phytol., 2004, vol. 161, pp. 121–132. doi 10.1046/j.1469-8137.2003.00949xCrossRefGoogle Scholar
  22. 22.
    Artyukova, E.V., Kholina, A.B., Kozyrenko, M.M., and Zhuravlev, Yu.N., Analysis of genetic variation in rare endemic species Oxytropis chankaensis Jurtz. (Fabaceae) using RAPD markers, Russ. J. Genet., 2004, vol. 40, no. 7, pp. 710–716.CrossRefGoogle Scholar
  23. 23.
    Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J., Universal primers for amplification of three non-coding regions of chloroplast DNA, Plant. Mol. Biol., 1991, vol. 17, pp. 1105–1109.CrossRefPubMedGoogle Scholar
  24. 24.
    Shaw, J., Lickey, E.B., Beck, J.T., et al., The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis, Am. J. Bot., 2005, vol. 92, pp. 142–166. doi 10.3732/ajb.92.1.142CrossRefPubMedGoogle Scholar
  25. 25.
    Bonfeld, J.K., Smith, K.F., and Staden, R., A new DNA sequence assembly program, Nucleic Acids Res., 1995, vol. 23, pp. 4992–4999. doi 10.1093/nar/23.24.4992CrossRefGoogle Scholar
  26. 26.
    Gouy, M., Guindon, S., and Gascuel, O., SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol., 2010, vol. 27, pp. 221–224. doi 10.1093/molbev/msp259CrossRefPubMedGoogle Scholar
  27. 27.
    Artyukova, E.V., Kozyrenko, M.M., Kholina, A.B., and Zhuravlev, Yu.N., High chloroplast haplotype diversity in the endemic legume Oxytropis chankaensis may result from independent polyploidization events, Genetica, 2011, vol. 139, no. 2, pp. 221–232. doi 10.1007/s10709-010-9539-8Google Scholar
  28. 28.
    Excoffier, L. and Lischer, H.E.L., Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564–567. doi 10.1111/j.1755-0998.2010.02847xCrossRefPubMedGoogle Scholar
  29. 29.
    Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.CrossRefPubMedGoogle Scholar
  30. 30.
    Bandelt, H.J. Forster, P., and Röhl A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37–48.CrossRefPubMedGoogle Scholar
  31. 31.
    Swofford, D.L., PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods): Version 4.04, Sunderland, Massachusetts: Sinauer Associates, 2003.Google Scholar
  32. 32.
    Posada, D. and Crandall, K.A., Modeltest: testing the model of DNA substitution, Bioinformatics, 1998, vol. 14, pp. 817–818. doi 10.1093/bioinformatics/14.9.817CrossRefPubMedGoogle Scholar
  33. 33.
    Borsch, T. and Quandt, D., Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA, Plant Syst. Evol., 2009, vol. 282, pp. 169–199. doi 10.1007/s00606-009-0210-8CrossRefGoogle Scholar
  34. 34.
    Xu, D.H., Abe, J., Sakai, M., et al., Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes, Theor. Appl. Genet., 2000, vol. 101, nos. 5–6, pp. 724–732. doi 10.1093/jhered/esi087CrossRefGoogle Scholar
  35. 35.
    Kenicer, G.J., Kajita, T., Pennington, R.T., and Murata, J., Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data, Am. J. Bot., 2005, vol. 97, no. 7, pp. 1199–1209. doi 10.3732/ajb.92.7.1199CrossRefGoogle Scholar
  36. 36.
    Vasil’chenko, I.T., To the question of the genesis of the genus Oxytropis DC., Bot. Zh., 1965, vol. 50, no. 3, pp. 313–323.Google Scholar
  37. 37.
    Polozhii, A.V., To the question of the origin and evolution of the genus Oxytropis (Fabaceae), Bot. Zh., 2003, vol. 88, no. 10, pp. 55–59.Google Scholar
  38. 38.
    Voroshilov, V.N., Opredelitel’ rastenii sovetskogo Dal’nego Vostoka (The Guidebook to the Vascular Plants of the Soviet Far East), Tsitsin, N.V., Ed., Moscow: Nauka, 1982.Google Scholar
  39. 39.
    Welsh, S.L., Oxytropis DCnames, basionyms, types, and synonyms: Flora North America project, Great Basin Nat., 1991, vol. 51, no. 4, pp. 377–396. doi 10.2307/41712682Google Scholar
  40. 40.
    Yakubov, V.V. and Chernyagina, O.A., Katalog flory Kamchatki (sosudistye rasteniya) (Catalogue of the Flora of Kamchatka (Vascular Plants)), Petropavlovsk-Kamchatskii: Kamchatpress, 2004.Google Scholar
  41. 41.
    Yurtsev, B.A., Survey of Arctic legumes with emphasis on the species concept in Oxytropis, Norw. Acad. Sci. Lett., 1999, vol. 38, pp. 295–318.Google Scholar
  42. 42.
    Malyshev, L.I., Ecological Asian enclave of the genus Oxytropis DC.(Fabaceae) in North America, Rastit. Mir Aziatsk. Ross., 2009, no. 1(3), pp. 31–43.Google Scholar
  43. 43.
    Kozyrenko, M.M., Artyukova, E.V., and Zhuravlev, Yu.N., Independent species status of Iris vorobievii N.S. Pavlova, Iris mandshurica Maxim., and Iris humilis Georgi (Iridaceae): evidence from the nuclear and chloroplast genomes, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1394–1402. doi 10l 134/S1022795409110143CrossRefGoogle Scholar
  44. 44.
    Vlasova, N.V., Dyukhina, E.I., and Trubina, L.K., Features of the geographical distribution of section Arctosa, genus Oxytropis (Fabaceae), Rastit. Mir Aziatsk. Ross., 2008, no. 1, pp. 10–16.Google Scholar
  45. 45.
    Kholina, A.B., Nakonechnaya, O.V., Yakubov, V.V., and Koren’, O.G., Genetic variation in six species of the genus Oxytropis DC.(Fabaceae) from Kamchatka Peninsula, Russ. J. Genet., 2013, vol. 49, no. 10, pp. 1021–1029. doi 10.1134/S1022795413100049CrossRefGoogle Scholar
  46. 46.
    Malyshev, L.I., Phenetics and chorology of the section Orobia Bunge, genus Oxytropis DC.(Fabaceae) in the Asian part of Russia, Rastit. Mir Aziatsk. Ross., 2008, no. 1, pp. 3–9.Google Scholar
  47. 47.
    Shimizu, T., The New Alpine Flora of Japan in Colour, Osaka: Hoikusha, 1982, vol. 1.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • A. B. Kholina
    • 1
  • M. M. Kozyrenko
    • 1
  • E. V. Artyukova
    • 1
  • D. V. Sandanov
    • 2
  • E. A. Andrianova
    • 3
  1. 1.Institute of Biology and Soil Science, Far East BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Institute of General and Experimental Biology, Siberian BranchRussian Academy of SciencesUlan-UdeRussia
  3. 3.Institute of Biological Problems of the North, Far East BranchRussian Academy of SciencesMagadanRussia

Personalised recommendations