Russian Journal of Genetics

, Volume 52, Issue 6, pp 622–625 | Cite as

Polymorphism C366G of gene GRIN2B and verbal episodic memory: No association with schizophrenia

  • M. V. Alfimova
  • V. E. Golimbet
  • G. I. Korovaitseva
  • T. V. Lezheiko
  • L. I. Abramova
  • V. G. Kaleda
Short Communications

Abstract

The present study searched for associations between gene GRIN2B (glutamate receptor, ionotropic, N-methyl-D-aspartate, subunit 2B) and component processes of verbal episodic memory in schizophrenic patients. The Rey Auditory Verbal Learning Test (RAVLT) as a part of a large neuropsychological battery was administered to 302 patients with schizophrenic spectrum disorders (sample PI). Also, 285 patients (sample P2) and 243 healthy controls (sample C2) performed the “10 words” test that measures short-term memory. The GRIN2B rs7301328 (C366G) polymorphism was genotyped for each subject. There were no associations between the polymorphism and any measure of the RAVLT either in the whole PI sample or in a subsample of patients with a severe cognitive deficit. The GRIN2B influenced immediate recall and proactive interference in the “10 words” test in the control group: homozygotes CC recalled fewer words and showed a lower effect of proactive interference than carriers of other genotypes. The results suggest that the C366G polymorphism could influence verbal episodic memory in the general population, but this influence is absent in schizophrenic patients.

Keywords

gene glutamate NMDA receptor cognitive deficit short-term memory RAVLT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klyushnik, T.P., Brusov, O.S., Burbaeva, G.Sh., and Kolyaskina, G.I., The modern view on the basic pathogenetic hypotheses of schizophrenia, Psikhiatriya, 2010, vol. 1, no. 43, pp. 7–13.Google Scholar
  2. 2.
    Li, D. and He, L., Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis, Genet. Med., 2007, vol. 9, no. 1, pp. 4–8. doi 10.1097/01gim.0000250507.96760.4bCrossRefPubMedGoogle Scholar
  3. 3.
    Ohtsuki, T., Sakurai, K., Dou, H., et al., Mutation analysis of the NMDAR2B (GRIN2B) gene in schizophrenia, Mol. Psychiatry, 2001, vol. 6, pp. 211–216. doi 10.1038/sjmp.4000808CrossRefPubMedGoogle Scholar
  4. 4.
    Gareeva, A.E., Zakirov, D.F., and Khusnutdinova, E.K., Association polymorphic variants of GRIN2B gene with paranoid schizophrenia and response to typical neuroleptics in Russians and Tatars from Bashkortostan Republic, Russ. J. Genet., 2013, vol. 49, no. 9, pp. 962–968. doi 10.1134/S1022795413080024CrossRefGoogle Scholar
  5. 5.
    Greenwood, T.A., Braff, D.L., Light, G.A., et al., Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia, Arch. Gen. Psychiatry, 2007, vol. 64, pp. 1242–1250. doi 10.1001/archpsyc.64.11.1242CrossRefPubMedGoogle Scholar
  6. 6.
    Newcomer, J.W. and Krystal, J.H., NMDA receptor regulation of memory and behavior in humans, Hippocampus, 2001, vol. 11, pp. 529–542. doi 10.1002/hipo.1069CrossRefPubMedGoogle Scholar
  7. 7.
    de Quervain, D. and Papassotiropoulos, A., Identification of a genetic cluster influencing memory performance and hippocampal activity in humans, Proc. Natl. Acad. Sci., 2006, vol. 103, pp. 4270–4274. doi 10.1073/pnas.0510212103CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jablensky, A., Morar, B., Wiltshire, S., et al., Polymorphisms associated with normal memory variation also affect memory impairment in schizophrenia, Genes Brain Behav., 2011, vol. 10, no. 4, pp. 410–417. doi 10.1111/j.1601-183x.2011.00679xCrossRefPubMedGoogle Scholar
  9. 9.
    Ludwig, K., Roeske, D., Herms, S., et al., Variation in GRIN2B contributes to weak performance in verbal short-term memory in children with dyslexia, Am. J. Med. Genet., Part B, 2009, vol. 153B, no. 2, pp. 503–511. doi 10.1002/ajmgb.31007Google Scholar
  10. 10.
    Greenwood, T., Light, G., Swerdlow, N., et al., Association analysis of 94 candidate genes and schizophreniarelated endophenotypes, PLoS One, 2012, vol. 7, no. 1. e29630. doi 10.1371/journalpone.0029630CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schmidt, M., Rey Auditory and Verbal Learning Test: AHandbook, Los Angeles: Western Psychological Services, 1996.Google Scholar
  12. 12.
    Alfimova, M.V., Korovaitseva, G.I., Lezheiko, T.V., and Golimbet, V.E., Effect of BDNF Val66Met polymorphism on normal variability of executive functions, Bull. Exp. Biol. Med., 2011, vol. 152, no. 11, pp. 606–609. doi 10.1007/s10517-012-1587-xGoogle Scholar
  13. 13.
    Greenwood, T.A., Swerdlow, N.R., Gur, R.E., et al., Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia, Am. J. Psychiatry, 2013, vol. 170, pp. 521–532. doi 10.1176/appiajp.2012.12020186CrossRefPubMedGoogle Scholar
  14. 14.
    Merritt, K., McGuire, P., and Egerton, A., Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis, Front. Psychiatry, 2013, vol. 4. e151. doi 10.3389/fpsyt.2013.00151CrossRefGoogle Scholar
  15. 15.
    Laporte, D.J., Lahti, A.C., Koffel, B., and Tamminga, C.A., Absence of ketamine effects on memory and other cognitive functions in schizophrenic patients, J. Psychiatr. Res., 1996, vol. 30, pp. 321–330. doi 10.1016/0022-3956(96)00018-0CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • M. V. Alfimova
    • 1
  • V. E. Golimbet
    • 1
  • G. I. Korovaitseva
    • 1
  • T. V. Lezheiko
    • 1
  • L. I. Abramova
    • 1
  • V. G. Kaleda
    • 1
  1. 1.Mental Health Research CenterMoscowRussia

Personalised recommendations