Skip to main content
Log in

The mechanisms of transgenerational inheritance and their potential contribution to human phenotypes

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

As of today, classical genetics has already completed the majority of groundwork to describe the laws of inheritance, identify the causes of many human diseases, and dissect the mechanisms of transfer of genetic information from parents to offspring. However, recent studies indicate that inheritance of phenotypic traits may also occur through nongenetic factors, in particular, through epigenetic factors, that manifest their effects in a transgenerational fashion. This review discusses findings in the area of transgenerational inheritance that open a new era in modern genetics. We discuss the mechanisms of transgenerational inheritance, including DNA methylation, histone modifications, and noncoding RNA transfer, and give an overview of the approaches to detect transgenerational effects in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamarck, J.-B., Philosophie zoologique ou exposition des considérations relatives á l’histoire naturelle des animaux, Paris: Dentu, 1809.

    Google Scholar 

  2. Weismann, A., The Germ-Plasm: Theory of Heredity, Charles Scribner’s Sons, 1891.

  3. Waddington, C.H., Canalization of development and the inheritance of acquired characters, Nature, 1942, vol. 150, no. 3811, pp. 563–565. doi 10.1038/150563a0

    Article  Google Scholar 

  4. Rutherford, S.L. and Lindquist, S., Hsp90 as a capacitor for morphological evolution, Nature, 1998, vol. 396, pp. 336–342. doi 10.1038/24550

    Article  CAS  PubMed  Google Scholar 

  5. Berger, S.L., Kouzarides, T., Shiekhattar, R., and Shilatifard, A., An operational definition of epigenetics, Genes Dev., 2009, vol. 23, no. 7, pp. 781–783. doi 10.1101/gad.1787609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greer, E.L., Maures, T.J., Ucar, D., et al., Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans, Nature, 2011, vol. 479, no. 7373, pp. 365–371. doi 10.1038/nature10572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greer, E.L., Maures, T.J., Hauswirth, A.G., et al., Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans, Nature, 2010, vol. 466, no. 7304, pp. 383–387. doi 10.1038/nature09195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dias, B.G. and Ressler, K.J., Parental olfactory experience influences behavior and neural structure in subsequent generations, Nat. Neurosci., 2014, vol. 17, no. 1, pp. 89–96. doi 10.1038/nn.3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gapp, K., Soldado-Magraner, S., Alvarez-Sánchez, M., et al., Early life stress in fathers improves behavioural flexibility in their offspring, Nat. Commun., 2014, vol. 5, no. 5466. doi 10.1038/ncomms6466

    Google Scholar 

  10. Rassoulzadegan, M., Grandjean, V., Gounon, P., et al., RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse, Nature, 2006, vol. 441, pp. 469–474. doi 10.1038/nature04674

    Article  CAS  PubMed  Google Scholar 

  11. Wagner, K.D., Wagner, N., Ghanbarian, H., et al., RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse, Dev. Cell, 2008, vol. 14, no. 6, pp. 962–969. doi 10.1016/jdevcel.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  12. Grandjean, V., Gounon, P., Wagner, N., et al., The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth, Development, 2009, vol. 136, no. 21, pp. 3647–3655. doi 10.1242/dev.041061

    Article  CAS  PubMed  Google Scholar 

  13. Clarke, H.J. and Vieux, K.F., Epigenetic inheritance through the female germ-line: the known, the unknown, and the possible, Semin. Cell. Dev. Biol., 2015. pii S1084-9521(15)00130-5. doi 10.1016/jsemcdb.2015.07.003

    Google Scholar 

  14. Svetlov, P.G., Fiziologiya (mekhanika) razvitiya v dvukh tomakh, (Physiology (Mechanics) of Development in Two Volumes), Leningrad: Nauka, 1978.

    Google Scholar 

  15. John, G.B., Shidler, M.J., Besmer, P., and Castrillon, D.H., Kit signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation, Dev. Biol., 2009, vol. 331, no. 2, pp. 292–299. doi 10.1016/jydbio.2009.05.546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hajkova, P., Maarri, O., Engemann, S., et al., DNAmethylation analysis by the bisulfite-assisted genomic sequencing method, Methods Mol. Biol., 2002, vol. 200, pp. 143–154. doi 10.1385/1-59259-182-5:143

    CAS  PubMed  Google Scholar 

  17. Seisenberger, S., Andrews, S., Krueger, F., et al., The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells, Mol. Cell, 2012, vol. 48, no. 6, pp. 849–862. doi 10.1016/jmolcel.2012.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gaydos, L.J., Wang, W., and Strome, S., Gene repression: H3K27me and PRC2 transmit a memory of repression across generations and during development, Science, 2014, vol. 345, no. 6203, pp. 1515–1518. doi 10.1126/science.1255023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zaratiegui, M., Castel, S.E., Irvine, D.V., et al., RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II, Nature, 2011, vol. 479, no. 7371, pp. 135–138. doi 10.1038/nature10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kleene, K.C., Poly (A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse, Development, 1989, vol. 106, no. 2, pp. 367–373.

    CAS  PubMed  Google Scholar 

  21. Sharma, U. and Rando, O.J., Father–son chats: inheriting stress through sperm RNA, Cell Metab., 2014, vol. 19, no. 6, pp. 894–895. doi 10.1016/jcmet.2014.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pembrey, M.E., Male-line transgenerational responses in humans, Hum. Fertil. (Cambridge), 2010, vol. 13, no. 4, pp. 268–271. doi 10.3109/14647273.2010.524721

    Article  Google Scholar 

  23. Pembrey, M.E., Bygren, L.O., Kaati, G., et al., Sexspecific, male-line transgenerational responses in humans, Eur. J. Hum. Genet., 2006, vol. 14, no. 2, pp. 159–166. doi 10.1038/sjejhg.5201538

    PubMed  Google Scholar 

  24. Northstone, K., Golding, J. Davey, Smith, G., et al., Prepubertal start of father’s smoking and increased body fat in his sons: further characterisation of paternal transgenerational responses, Eur. J. Hum. Genet., 2014, vol. 22, no. 12, pp. 1382–1386. doi 10.1038/ejl1g.2014.31

    Article  PubMed  PubMed Central  Google Scholar 

  25. Golding, J., Northstone, K., Gregory, S., et al., The anthropometry of children and adolescents may be influenced by the prenatal smoking habits of their grandmothers: a longitudinal cohort study, Am. J. Hum. Biol., 2014, vol. 26, no. 6, pp. 731–739. doi 10.1002/ajhb. 22594

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen, T.H., Chiu, Y.H., and Boucher, B.J., Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program, Am. J. Clin. Nutr., 2006, vol. 83, no. 3, pp. 688–692.

    CAS  PubMed  Google Scholar 

  27. Ravelli, G.P., Stein, Z.A., and Susser, M.W., Obesity in young men after famine exposure in utero and early infancy, N. Engl. J. Med., 1976, vol. 295, no. 7, pp. 349–353. doi 10.1056/NEJM197608122950701

    Article  CAS  PubMed  Google Scholar 

  28. Heijmans, B.T., Tobi, E.W., and Stein, A.D., Persistent epigenetic differences associated with prenatal exposure to famine in humans, Proc. Natl. Acad. Sci U.S.A., 2008, vol. 105, no. 44, pp. 17046–17049. doi 10.1073/ pnas.0806560105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Veenendaal, M.V., Painter, R.C., de Rooij, S.R., et al., Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine, BJOG, 2013, vol. 120, no. 5, pp. 548–553. doi 10.1111/1471-0528.12136

    Article  CAS  PubMed  Google Scholar 

  30. Cao-Lei, L., Dancause, K.N., Elgbeili, G., et al., DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 131/2 years: Project Ice Storm, Epigenetics, 2015, vol. 10, no. 8, pp. 749–761. doi 10.1080/ 15592294.2015.1063771

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cao-Lei, L., Massart, R., Suderman, M.J., et al., DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm, PLoS One, 2014, vol. 9, no. 9. e107653. doi 10.1371/ journalpone.0107653

    Google Scholar 

  32. Yehuda, R., Daskalakis, N.P., Bierer, L.M., et al., Holocaust exposure induced intergenerational effects on FKBP5 methylation, Biol. Psychiatry, 2015. pii: S0006-3223(15)00652-6. doi 10.1016/jbiopsych.2015.08.005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Skoblov.

Additional information

Original Russian Text © M.Yu. Skoblov, V.A. Scobeyeva, A.V. Baranova, 2016, published in Genetika, 2016, Vol. 52, No. 3, pp. 283–292.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoblov, M.Y., Scobeyeva, V.A. & Baranova, A.V. The mechanisms of transgenerational inheritance and their potential contribution to human phenotypes. Russ J Genet 52, 249–256 (2016). https://doi.org/10.1134/S1022795416030145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416030145

Keywords

Navigation