Skip to main content
Log in

Expression of SM30(A–F) genes encoding spicule matrix proteins in intact and damaged sea urchin Strongylocentrotus intermedius at the six-armed pluteus

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In this study we investigated expression of the SM30(A–F) gene family encoding Strongylocentrotus intermedius spicule matrix proteins during the normal and regenerative pluteus II stage (three pairs of arms). We found that SiSM30A and SiSM30B genes are expressed at high levels in the normal pluteus II sea urchin. SiSM30A is expression was also significantly upregulated in the reparative pluteus II stage 3 hours after damage. Conversely, SiSM30B was downregulated during the reparative pluteus II stage. Our findings reveal a substantial similarity between the activity of SiSM30A and SiSM30B activity in the processes of regenerative growth during the pluteus II stage and during normal development at the prism stage in Strongylocentrotus purpuratus. On the basis of our findings, we propose that normal developmental mechanisms corresponding to the preceding developmental stage are reactivated during pluteus regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubois, Ph. and Ameye, L., Regeneration of spines and pedicellariae in echinoderms: a review, Microsc. Res. Tech., 2001, vol. 55, pp. 427–437.

    Article  CAS  PubMed  Google Scholar 

  2. Vinnikova, V.V. and Drozdov, A.L., Spine skeleton morphogenesis during regeneration in clypeasteroid and camarodont sea urchins, Russ. J. Mar. Biol., 2011, vol. 37, no. 4, pp. 311–318.

    Article  Google Scholar 

  3. Dolmatov, I.Yu. and Mashanov, V.S., Regeneratsiya u goloturii (Regeneration in Sea Cucumbers), Vladivostok: Dal’nauka, 2007.

    Google Scholar 

  4. Runnström, J., Analytische Studien über die Seeigelentwicklung, Arch. Entw. Mech. Org., 1915, vol. 41, pp. 1–56.

    Google Scholar 

  5. Vickery, M.C.L., Vickery, M.S., Amsler, C.D., and Mcclintock, J.B., Regeneration in echinoderm larvae, Microsc. Res. Tech., 2001, vol. 55, pp. 464–473.

    Article  CAS  PubMed  Google Scholar 

  6. Horstadius, S., Experimental Embryology of Echinoderms, Oxford: Clarendon Press, 1973.

    Google Scholar 

  7. Thorndyke, M.C., Chen, W.C., Moss, C., et al., Regeneration in echinoderms: cellular and molecular aspects, in Echinoderm Research, Rotterdam: Balkema, 1999, pp. 159–164.

    Google Scholar 

  8. Wilt, F.H. and Ettensohn, C.A., The morphogenesis and biomineralization of the sea urchin larval skeleton, Handbook of Biomineralization, Bauerlein, E., Ed., 2007, vol. 1, pp. 183–210.

    Google Scholar 

  9. Okazaki, K. and Inoué, S., Crystal property of the larval sea urchin spicule, Dev. Growth Differ., 1976, vol. 18, pp. 413–434.

    Article  Google Scholar 

  10. Gould, D. and Benson, S.C., Selective inhibition of collagen synthesis in the sea urchin embryos by a low concentration of actinomycin D, Exp. Cell Res., 1978, vol. 112, pp. 73–78.

    Article  CAS  PubMed  Google Scholar 

  11. Benson, S.C., Benson, N.C., and Wilt, F., The organic matrix of the skeletal spicule of the sea urchin embryos, Cell. Biol., 1986, vol. 102, pp. 1878–1886.

    Article  CAS  Google Scholar 

  12. Killian, Ch.E., Croker, L., and Wilt, F.H., SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus, Gene Exp. Pat., 2010, vol. 10, pp. 135–139.

    Article  CAS  Google Scholar 

  13. Mann, K., Proustka, A.J., and Mann, M., The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes, Proteome Sci., 2008, vol. 6, pp. 22–32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guss, K.A. and Ettensohn, C.A., Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues, Development, 1997, vol. 124, pp. 1899–1908.

    CAS  PubMed  Google Scholar 

  15. Wilt, F., Killian, Ch.E., Croker, L., and Hamilton, P., SM30 protein function during sea urchin larval spicule formation, J. Struct. Biol., 2013, vol. 183, pp. 199–204.

    Article  CAS  PubMed  Google Scholar 

  16. Kashenko, S.D., Vyrashchivanie lichinok donnykh morskikh bespozvonochnykh v laboratornykh usloviyakh (prakticheskie rekomendatsii) (Rearing of Benthic Marine Invertebrates under Laboratory Conditions (Practical Guidelines)), Vladivostok: Dal’nauka, 2010.

    Google Scholar 

  17. Kiselev, K.V., Dubrovina, A.S., Shumakova, O.A., et al., Structure and expression profiling of a novel calcium-dependent protein kinase gene, CDPK3a, in leaves, stems, grapes, and cell cultures of wild-growing grapevine Vitis amurensis Rupr., Plant. Cell Rep., 2013, vol. 32, pp. 431–442.

    CAS  PubMed  Google Scholar 

  18. Shumakova, O.A. and Kiselev, K.V., Regulation of somatic embryogenesis in Panax ginseng C.A. Meyer cell cultures by PgCDPK2DS1, Russ. J. Genet., 2014, vol. 50, no. 6, pp. 598–605.

    Article  CAS  Google Scholar 

  19. Dubrovina, A.S., Aleynova, O.A., Kiselev, K.V., and Novikova, G.V., True and false alternative transcripts of calcium-dependent protein kinase CPK9 and CPK3a genes in Vitis amurensis, Acta Physiol. Plant., 2014, vol. 36, pp. 1727–1737.

    Article  CAS  Google Scholar 

  20. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  21. Ageenko, N.V., Kiselev, K.V., and Odintsova, N.A., Expression of pigment cell-specific genes in the ontogenesis of the sea urchin Strongylocentrotus intermedius, Evid-Based Compl. Alt., 2011, pp. 1–9.

    Google Scholar 

  22. Yajima, M., A switch in tne cellular basis of skeletogenesis in late-stage sea urchin larvae, Dev. Biol., 2007, vol. 307, pp. 272–281.

    Article  CAS  PubMed  Google Scholar 

  23. Gao, F. and Davidson, E.H., Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 6091–6096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rafiq, K., Cheers, M.S., and Ettensohn, C.A., The genomic regulatory control of skeletal morphogenesis in sea urchin, Development, 2012, vol. 139, pp. 579–590.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharmankina.

Additional information

Original Russian Text © V.V. Sharmankina, K.V. Kiselev, 2016, published in Genetika, 2016, Vol. 52, No. 3, pp. 339–345.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmankina, V.V., Kiselev, K.V. Expression of SM30(A–F) genes encoding spicule matrix proteins in intact and damaged sea urchin Strongylocentrotus intermedius at the six-armed pluteus. Russ J Genet 52, 298–303 (2016). https://doi.org/10.1134/S1022795416020125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416020125

Keywords

Navigation