Skip to main content
Log in

Telomere recombination in normal mammalian cells

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Two mechanisms of telomere length maintenance are known to date. The first includes the use of a special enzymatic telomerase complex to solve the problems that arise during the replication of linear DNA in a normal diploid and part of tumor cells. Alternative lengthening of telomeres (ALT), which is based on the homologous recombination of telomere DNA, represents the second mechanism. Until recently, ALT was assumed to be expressed only in 15–20% of tumors lacking active telomerase and,, together with telomerase reactivation represented one of two possibilities to overcome the replicative senescence observed in somatic mammalian cells due to aging or during cell culturing in vitro. Previously described sporadic cases of combinations of the two mechanisms of telomere length maintenance in several cell lines in vitro were attributed to the experimental design rather than to a real biological phenomenon, since active cellular division without active telomerase was considered to be the “gold standard” of ALT. The present review describes the morphological and functional reorganizations of mammalian telomeres observed with ALT activation, as well as recently observed and well-documented cases of combinations between ALT-like and telomerase-dependent mechanisms in mammalian cells. The possible role of telomere recombination in telomerase-dependent cells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makarov, V.L., Hirose, Y., and Langmore, J.P., Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening, Cell, 1997, vol. 88, pp. 657–666.

    Article  CAS  PubMed  Google Scholar 

  2. Wellinger, R.J. and Sen, D., The DNA structures at the ends of eukaryotic chromosomes, Eur. J. Cancer, 1997, vol. 33, pp. 735–749.

    Article  CAS  PubMed  Google Scholar 

  3. Greider, C.W., Telomeres Do D-Loop–T-Loop, Cell, 1999, vol. 97, pp. 419–422.

    Article  CAS  PubMed  Google Scholar 

  4. Stansel, R.M., Subramanian, D., and Griffith, J.D., p53 binds telomeric single strand overhangs and t-top junctions in vitro, J. Biol. Chem., 2002, vol. 277, pp. 11625–11628.

    Article  CAS  PubMed  Google Scholar 

  5. de Lange, T., Shelterin: the protein complex that shapes and safeguards human telomeres, Genes Dev., 2005, vol. 19, pp. 2100–2110.

    Article  PubMed  Google Scholar 

  6. Feuerhahn, S., Iglesias, N., Panza, A., et al., TERRA biogenesis, turnover and implications for function, FEBS Lett., 2010, vol. 584, pp. 3812–3818.

    Article  CAS  PubMed  Google Scholar 

  7. Zhdanova, N.S., Minina, Iu.M., and Rubtsov, N.B., Mammalian telomere biology, Mol. Biol. (Moscow), 2012, vol. 46, pp. 539–555.

    Article  CAS  Google Scholar 

  8. Gomes, N.M., Ryder, O.A., Houck, M.L., et al., Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination, Aging Cell, 2011, vol. 10, pp. 761–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Sullivan, R.J. and Karlseder, J., Telomeres: protecting chromosomes against genome instability, Nat. Rev. Mol. Cell. Biol., 2010, vol. 11, pp. 171–181.

    PubMed  PubMed Central  Google Scholar 

  10. Robin, J.D., Ludlow, A.T., Batten, K., et al., Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances, Genes Dev., 2015, vol. 28, pp. 2464–2476.

    Article  Google Scholar 

  11. Gilley, D., Tanaka, H., and Herbert, B.-S., Telomere dysfunction in aging and cancer, Int. J. Biochem. Cell. Biol., 2005, vol. 37, pp. 1000–1013.

    Article  CAS  PubMed  Google Scholar 

  12. Henson, J.D. and Reddel, R.R., Assaying and investigating alternative lengthening of telomeres, FEBS Lett., 2010, vol. 584, pp. 3800–3811.

    Article  CAS  PubMed  Google Scholar 

  13. Pickett, H.A., Cesare, A.J., Johnston, R.L., et al., Control of telomere length by a trimming mechanism that involves generation of t-circles, EMBO J., 2009, vol. 28, pp. 799–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pickett, H.A., Henson, J.D., Au, A.Y., et al., Normal mammalian cells negatively regulate telomere length by telomere trimming, Hum. Mol. Genet., 2011, vol. 20, pp. 4684–4692.

    Article  CAS  PubMed  Google Scholar 

  15. Olovnikov, A.M., Principle of marginotomy in template synthesis of polynucleotides, Dokl. Akad. Nauk SSSR, 1971, vol. 201, pp. 1496–1499.

    CAS  PubMed  Google Scholar 

  16. Olovnikov, A.M., Telomeres, telomerase, and aging: origin of the theory, Exp. Gerontol., 1996, vol. 31, pp. 443–448.

    Article  CAS  PubMed  Google Scholar 

  17. Greider, C.W. and Blackburn, E.H., A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis, Nature, 1989, vol. 337, pp. 331–337.

    Article  CAS  PubMed  Google Scholar 

  18. Drosopoulos, W.C., Kosiyatrakul, S.T., Yan, Z., et al., Human telomeres replicate using chromosomes specific, rather than universal, replication programs, J. Cell Biol., 2012, vol. 197, pp. 253–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohki, R. and Ishikawa, F., Telomere bound TRF1 and TRF2 stall the replication fork at telomeric repeats, Nucleic Acids Res., 2004, vol. 32, pp. 1627–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gilson, E. and Géli, V., How telomeres are replicated, Nat. Rev. Mol. Cell. Biol., 2007, vol. 8, pp. 825–838.

    Article  CAS  PubMed  Google Scholar 

  21. Holthausena, J.T., Wyman, C., and Kanaar, R., Regulation of DNA strand exchange in homologous recombination, DNA Repair, 2010, vol. 9, pp. 1264–1272.

    Article  Google Scholar 

  22. Blackburn, E.H., Telomerases, Annu. Rev. Biochem., 1992, vol. 61, pp. 113–129.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, Y., Sfeir, A.J., Zou, Y., et al., Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells, Cell, 2009, vol. 138, pp. 463–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Montanaro, L., Calienni, M., Ceccarelli, C., et al., Relationship between dyskerin expression and telomerase activity in human breast cancer, Cell Oncol., 2008, vol. 30, pp. 483–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Venteicher, A.S., Abreu, E.B., Meng, Z., et al., A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis, Science, 2009, vol. 323, pp. 644–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abreu, E., Aritonovska, E., Reichenbach, P., et al., TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo, Mol. Cell. Biol., 2010, vol. 30, pp. 2971–2982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaug, A.J., Podell, E.R., Nandakumar, J., and Cech, T.R., Functional interaction between telomere protein TPP1 and telomerase, Genes Dev., 2010, vol. 24, pp. 613–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frescas, D. and de Lange, T., TRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1, Mol. Cell Biol., 2014, vol. 34, pp. 1349–1362.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zvereva, M.E., Shcherbakova, D.M., and Dontsova, O.A., Telomerase: structure, functions, and activity regulation, Biochemistry (Moscow), 2010, vol. 75, no. 13, pp. 1563–1583.

    Article  CAS  Google Scholar 

  30. Dunham, M.A., Neumann, A.A., Fasching, C.L., and Reddel, R.R., Telomere maintenance by recombination in human cells, Nat. Genet., 2000, vol. 26, pp. 447–450.

    Article  CAS  PubMed  Google Scholar 

  31. Muntoni, A., Neumann, A.A., Hills, M., and Reddel, R.R., Telomere elongation involves intra-molecular DNA replication in cells utilizing alternative lengthening of telomeres, Hum. Mol. Genet., 2009, vol. 18, pp. 1017–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, W.Q., Zhong, Z.H., Henson, J.D., et al., Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex, Mol. Cell. Biol., 2005, vol. 25, pp. 2708–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhong, Z.H., Jiang, W.Q., Cesare, A.J., et al., Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres, J. Biol. Chem., 2007, vol. 282, pp. 29314–29322.

    Article  CAS  PubMed  Google Scholar 

  34. Flynn, R.L., Cox, K.E., Jeitany, M., et al., Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors, Science, 2015, vol. 347, pp. 273–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bryan, T.M., Englezou, A., Gupta, J., et al., Telomere elongation in immortal human cells without detectable telomerase activity, EMBO J., 1995, vol. 14, pp. 4240–4248.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Perrem, K., Colgin, L.M., Neumann, A.A., et al., Coexistence of alternative lengthening of telomeres and telomerase in hTERT-transfected GM847 cells, Mol. Cell. Biol., 2001, vol. 21, pp. 3862–3875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Londoño-Vallejo, J.A., Der-Sarkissian, H., Cazes, L., et al., Alternative lengthening of telomeres is characterized by high rates of telomeric exchange, Cancer Res., 2004, vol. 64, pp. 2324–2327.

    Article  PubMed  Google Scholar 

  38. Tokutake, Y., Matsumoto, T., Watanabe, T., et al., Extra-chromosomal telomere repeat DNA in telomerase-negative immortalized cell lines, Biochem. Biophys. Res. Commun., 1998, vol. 247, pp. 765–772.

    Article  CAS  PubMed  Google Scholar 

  39. Cesare, A.J. and Griffith, J.D., Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops, Mol. Cell. Biol., 2004, vol. 24, pp. 9948–9957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nabetani, A. and Ishikawa, F., Unusual telomeric DNAs in human telomerase-negative immortalized cells, Mol. Cell. Biol., 2009, vol. 29, pp. 703–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henson, J.D., Cao, Y., Huschtscha, L.I., et al., DNA C-circles are specific and quantifiable markers of alternative lengthening of telomeres activity, Nat. Biotechnol., 2009, vol. 27, pp. 1181–1185.

    Article  CAS  PubMed  Google Scholar 

  42. Yeager, T.R., Neumann, A.A., Englezou, A., et al., Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body, Cancer Res., 1999, vol. 59, pp. 4175–4179.

    CAS  PubMed  Google Scholar 

  43. Draskovic, I., Arnoult, N., Steiner, V., et al., Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 15726–15731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Conomos, D., Stutz, M.D., Hills, M., et al., Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells, J. Cell Biol., 2012, vol. 199, pp. 893–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Varley, H., Pickett, H.A., Foxon, J.L., et al., Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells, Nat. Genet., 2002, vol. 30, pp. 301–305.

    Article  PubMed  Google Scholar 

  46. Palm, W. and de Lange, T., How shelterin protects mammalian telomeres, Ann. Rev. Genet., 2008, vol. 42, pp. 301–334.

    Article  CAS  PubMed  Google Scholar 

  47. Sfeir, A., Kabir, S., van Overbeek, V., et al., Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal, Science, 2010, vol. 327, pp. 1657–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ye, J.Z., Donigian, J.R., Van Overbeek, M., et al., TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres, J. Biol. Chem., 2004, vol. 279, pp. 47264–47271.

    Article  CAS  PubMed  Google Scholar 

  49. Ye, J.Z., Hockemeyer, D., Krutchinsky, A.N., et al., POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex, Genes Dev., 2004, vol. 18, pp. 1649–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaul, Z., Cesare, A.J., Huschtscha, L.I., et al., Five dysfunctional telomeres predict onset of senescence in human cells, EMBO Rep., 2011, vol. 13, pp. 52–59.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cesare, A.J., Kaul, Z., Cohen, S.B., et al., Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions, Nat. Struct. Mol. Biol., 2009, vol. 16, pp. 1244–1251.

    Article  CAS  PubMed  Google Scholar 

  52. Lundblad, V., Telomere maintenance without telomerase, Oncogene, 2002, vol. 21, pp. 522–531.

    Article  CAS  PubMed  Google Scholar 

  53. Griffith, D., Comeau, L., Rosenfield, S., et al., Mammalian telomeres end in a large duplex loop, Cell, 1999, vol. 97, pp. 503–514.

    Article  CAS  PubMed  Google Scholar 

  54. Stansel, R.M., de Lange, T., and Griggith, G.D., Tloop assembly in vitro involves binding of TRF2 near 3' overhang, EMBO J., 2001, vol. 20, pp. 5532–5540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lovejoy, C.A., Li, W., Reisenweber, S., et al., Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway, PLoS Genet., 2012, vol. 8. e1002772

    Google Scholar 

  56. Lillard-Wetherell, K., Machwe, A., Langland, G.T., et al., Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2 by the telomere proteins TRF1 and TRF2, Hum. Mol. Genet., 2004, vol. 13, pp. 1919–1932.

    Article  CAS  PubMed  Google Scholar 

  57. Allshire, R.C., Dempster, M., and Hastie, N.D., Human telomeres contain at least three types of G-rich repeat distributed non-randomly, Nucleic Acids Res., 1989, vol. 17, pp. 4611–4627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakellariou, D., Chiourea, M., Raftopoulou, C., and Gagos, S., Alternating lengthening of telomeres: recurrent cytogenetic aberration and chromosome stability under extreme telomere dysfunction, Neoplasia, 2013, vol. 15, pp. 1301–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gocha, R.S., Harris, J., and Groden, J., Alternative mechanisms of telomere lengthening: permissive mutations, DNA repair proteins and tumorigenic progression, Mutat. Res., 2013, vols. 743–744, pp. 142–150.

    Google Scholar 

  60. Xue, Y., Gibbons, R., Yan, Z., et al., The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 1124–1128.

    Google Scholar 

  61. Episkopou, H., Draskovic, I., and Van Beneden, A., Alternative lengthening of telomeres is characterized by reduced compaction of telomeric chromatin, Nucleic Acids Res., 2014, vol. 42, pp. 4391–4405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lejnine, S., Makarov, V.L., and Langmore, J.P., Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 2393–2397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Michishita, E., McCord, R.A., Berber, E., et al., SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin, Nature, 2008, vol. 452, pp. 492–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arnoult, N., Van Beneden, A., and Decottignies, A., Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1A, Nat. Struct. Mol. Biol., 2012, vol. 19, pp. 948–956.

    Article  CAS  PubMed  Google Scholar 

  65. Brown, A.D., Sager, B.W., Gorthi, A., et al., ATR suppresses endogenous DNA damage and allows completion of homologous recombination repair, PLoS One, 2014, vol. 9. e91222

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lustig, A.J., Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion, Nat. Rev. Genet., 2003, vol. 4, pp. 916–923.

    Article  CAS  PubMed  Google Scholar 

  67. Neumann, A.A., Watson, C.M., Noble, J.R., et al., Alternative lengthening of telomeres in normal mammalian somatic cells, Genes Dev., 2013, vol. 27, pp. 18–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kipling, D. and Cooke, H.J., Hypervariable ultra-long telomeres in mice, Nature, 1990, vol. 347, pp. 400–402.

    Article  CAS  PubMed  Google Scholar 

  69. Hemann, M.T. and Greider, C.W., Wild-derived inbred mouse strains have short telomeres, Nucleic Acids Res., 2000, vol. 28, pp. 4474–4478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dlaska, M., Schoffski, P., and Bechter, O.E., Intertelomeric recombination is present in telomerase-positive human cells, Cell Cycle, 2013, vol. 12, pp. 2084–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhdanova, N.S., Draskovic, I., Minina, J.M., et al., Recombinogenic telomeres in diploid Sorex granarius (Soricidae, Eulipotyphla) fibroblast cells, Mol. Cell. Biol., 2014, vol. 34, pp. 2786–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhdanova, N.S., Karamisheva, T.V., Minina, J., et al., Unusual distribution pattern of telomeric repeats in the shrews Sorex araneus and Sorex granarius, Chromosome Res., 2005, pp. 617–625.

    Google Scholar 

  73. Zhdanova, N.S., Minina, J.M., Karamisheva, T.V., et al., The very long telomeres in Sorex granarius (Soricidae, Eulipothyphla) contain ribosomal DNA, Chromosome Res., 2007, vol. 15, pp. 881–890.

    Article  CAS  PubMed  Google Scholar 

  74. Zhdanova, N.S., Minina, Yu.M., Karamysheva, T.V., et al., The structure of long telomeres in chromosomes of the Iberian shrew, Russ. J. Genet., 2010, vol. 46, no. 9, pp. 1084–1086.

    Article  CAS  Google Scholar 

  75. Plantinga, M.J., Pascarelli, K.M., Merkell, A.S., et al., Telomerase suppresses formation of ALT-associated single-stranded telomeric C-circles, Mol. Cancer Res., 2013, vol. 11, pp. 557–567.

    Article  CAS  PubMed  Google Scholar 

  76. de Lange, T., T-loops and the origin of telomeres, Nat. Rev. Mol. Cell. Biol., 2004, vol. 5, pp. 323–329.

    Article  PubMed  Google Scholar 

  77. Liu, L., Bailey, S.M., Okuka, M., et al., Telomere lengthening early in development, Nat. Cell Biol., 2007, vol. 9, pp. 1436–1441.

    Article  CAS  PubMed  Google Scholar 

  78. Ozturk, S., Sozen, B., and Demir, N., Telomere length and telomerase activity during oocyte maturation and early embryo development in mammalian species, Mol. Hum. Reprod., 2014, vol. 20, pp. 15–30.

    Article  CAS  PubMed  Google Scholar 

  79. Schaetzlein, S., Lucas-Hahn, A., Lemme, E., et al., Telomere length is reset during early mammalian embryogenesis, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 8034–8038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Varela, E., Schneider, R.P., Ortega, S., and Blasco, M.A., Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 15207–15212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu, J. and Yang, X., Telomerase activity in bovine embryos during early development, Biol. Reprod., 2000, vol. 63, pp. 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  82. Tomaska, L., Nosek, J., Kramara, J., and Griffith, J.D., Telomeric circles: universal players in telomere maintenance?, Nat. Struct. Mol. Biol., 2009, vol. 16, pp. 1010–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Zhdanova.

Additional information

Original Russian Text © N.S. Zhdanova, N.B. Rubtsov, 2016, published in Genetika, 2016, Vol. 52, No. 1, pp. 14–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanova, N.S., Rubtsov, N.B. Telomere recombination in normal mammalian cells. Russ J Genet 52, 8–16 (2016). https://doi.org/10.1134/S1022795416010142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416010142

Keywords

Navigation