Skip to main content
Log in

Spatial distribution of intron 2 of nad1 gene haplotypes in populations of Norway and Siberian spruce (Picea abiesP. obovata) species complex

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The length and sequence variations among intron 2 haplotypes of the mitochondrial nad1 gene have been studied in the Norway and Siberian spruce (Picea abies (L.) H. Karst.–P. obovata Ledeb.) species complex. Twenty-two native populations and 15 provenances were analyzed. The distribution of the northern European haplogroup (haplotypes 721, 755, 789, 823, 857, 891, and 925) is delimited in the east by the Ural region inclusively. Haplotype 712 is widespread in populations of Siberia and in the Far East and in northeastern Russia. A novel variant of the Siberian haplogroup (780) containing three copies of the first minisatellite motif (34 bp) was found for the first time. The absence of an admixture of the northern European and Siberian haplotypes in the zone of spruce species introgression previously marked by morphological traits and nuclear allozyme loci was demonstrated. This may be evidence of the existence of a sharper geographic boundary between the two haplogroups, as compared to a boundary based on phenotypic and allozyme data. A high proportion of the interpopulation component of variation (65%) estimated by AMOVA indicates a substantial genetic subdivision of European and Siberian populations of the Palearctic spruce complex by mtDNA, which can be putatively explained by natural barriers to gene flow with seeds related, for instance, to the woodless regions of the western Siberian Plain in the Pleistocene and perhaps to the floodplains of large rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt-Vogt, H., Die Fichte, Hamburg: Paul Parey, 1987, vol. 1.

  2. Bobrov, E.G., Lesoobrazuyushchie khvoinye SSSR (Forest Forming Coniferous of the Soviet Union), Leningrad: Nauka, 1978.

    Google Scholar 

  3. Popov, P.P., El’ evropeiskaya i sibirskaya (Norway and Siberian Spruce), Novosibirsk: Nauka, 2005.

    Google Scholar 

  4. Pravdin, L.F., El’ evropeiskaya i el' sibirskaya v SSSR (Norway and Siberian Spruce in the Soviet Union), Moscow: Nauka, 1975.

    Google Scholar 

  5. Skroppa, T., Tollefsrud, M.M., Sperisen, C., and Johnsen, O., Rapid change in adaptive performance from one generation to the next in Picea abies—Central European trees in a Nordic environment, Tree Genet. Genomes, 2010, vol. 6, no. 1, pp. 93–99.

    Article  Google Scholar 

  6. Mochalova, O.A., A new location of Siberian spruce (Picea obovata Ledeb.) in the extreme North-East of Asia, Bot. Zh., 1996, vol. 81, no. 12, pp. 127–133.

    Google Scholar 

  7. Potenko, V.V., Relationships among spruces (Picea A. Dietr., Pinaceae) of the Russian Far East, Plant Syst. Evol., 2007, vol. 268, nos. 1–4, pp. 1–13.

    Article  Google Scholar 

  8. Bobrov, E.G., History and systematics of the genus Picea A. Dietr., Nov. Sist. Vyssh. Rast., 1971, vol. 7, pp. 5–40.

    Google Scholar 

  9. Golubets, M.A., Two subspecies of Picea excelsa Link. and the problem of their distribution area, Bot. Zh., 1960, vol. 45, no. 5, pp. 684–694.

    Google Scholar 

  10. Golubets, M.A., Modern interpretation of the species Picea abies (L.) Karst. and its intraspecies taxa, Bot. Zh., 1968, vol. 53, no. 8, pp. 1048–1062.

    Google Scholar 

  11. Komarov, Vl.., Golosemennye (Gymnosperms), in Flora SSSR (Flora of the Soviet Union), Leningrad, 1934.

    Google Scholar 

  12. Danilov, D.N., Variation of seed scales of Picea excelsa Link., Bot. Zh., 1943, vol. 28, no. 5, pp. 191–202.

    Google Scholar 

  13. Dyrenkov, S.A., Variation of some morphological characters in hybrid populations of spruce Picea abies (L.) Karst. × Picea obovata Ledeb. on Veps Upland, Bot. Zh., 1978, vol. 63, no. 2, pp. 191–205.

    Google Scholar 

  14. Dyrenkov, S.A., Struktura i dinamika taezhnykh el’nikov (Structure and Dynamics of Taiga Spruce Forests), Leningrad: Nauka, 1984.

    Google Scholar 

  15. Popov, P.P., El’ na vostoke Evropy i v Zapadnoi Sibiri (populyatsionno-geograficheskaya izmenchivost' i ee lesovodstvennoe znachenie) (Spruce in Eastern Europe and Western Siberia (Population-Geographic Variation and Its Silvicultural Value)), Novosibirsk: Nauka, 1999.

    Google Scholar 

  16. Krutovskii, K.V. and Bergmann, F., Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, Picea obovata Ledeb., spruce species studied by isozyme loci, Heredity, 1995, vol. 74, pp. 464–480.

    Article  CAS  Google Scholar 

  17. Lagercrantz, U. and Ryman, N., Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation, Evolution, 1990, vol. 44, no. 1, pp. 38–53.

    Article  Google Scholar 

  18. Goncharenko, G.G. and Potenko, V.V., Variation and differentiation in spruce Picea abies (L.) Karst. among populations of Ukraine, Belarus and Latvia, Dokl. Akad. Nauk SSSR, 1990, vol. 314, no. 2, pp. 492–496.

    CAS  Google Scholar 

  19. Goncharenko, G.G. and Potenko, V.V., The parameters of genetic variation and differentiation among populations of Norway spruce (Picea abies (L.) Karst.) and Siberian spruce (Picea obovata Ledeb.), Genetika (Moscow), 1991, vol. 27, no. 10, pp. 1759–1772.

    Google Scholar 

  20. Goncharenko, G.G. and Padutov, V.E., Populyatsionnaya I evolyutsionnaya genetika elei Palearktiki (Population and Evolutionary Genetics of Palearctic Spruces), Gomel’: Institut Lesa Natsional’noy Akademii Nauk Belarusi, 2001, vol. 197.

  21. Politov, D.V. and Krutovskii, K.V., Clinal variability and introgressive hybridization in populations of European and Siberian spruces, in Zhizn’ populyatsii v geterogennoi srede (The Life of Populations in a Heterogeneous Environment), Ioshkar-Ola: Periodika Marii-El, 1998, pp. 78–89.

    Google Scholar 

  22. Politov, D.V., Population genetics and evolutionary relationships of the pine species (family Pinaceae) of Northern Eurasia, Doctoral (Biol.) Dissertation, Moscow: Institut Obshchei Genetiki im. N.I. Vavilova, 2007, p. 432.

    Google Scholar 

  23. Tollefsrud, M.M., Sonstebo, J.H., Brochmann, C., et al., Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies, Heredity, 2009, vol. 102, no. 6, pp. 549–562.

    Article  CAS  PubMed  Google Scholar 

  24. Il’inov, A.A., Topchieva, L.V., and Raevskii, B.V., Using microsatellite loci in the study of gene pool of Finnish spruce Picea × fennica (Regel) in Karelia, Khvoinye Boreal’noi Zony, 2012, vol. 30, no. 1–2, pp. 80–86.

    Google Scholar 

  25. Mudrik, E.A., Belokon’, M.M., Belokon’, Yu.S., et al., Application of microsatellite loci to optimize forest seed zoning of valuable coniferous species, in Provintsiya Kheiluntszyan, Kheikheskii Nauchnyi forum kitaisko-rossiiskogo nauchnogo sotrudnichestva v oblasti lesnogo khozyaistva (Heilongjiang—Heihe Scientific Forum of China–Russia Forestry Cooperation), Heihe, 2010, pp. 85–90.

    Google Scholar 

  26. Potokina, E.K., Orlova, L.V., Vishnevskaya, M.S., et al., Genetic differentiation of spruce populations in northwest Russia according to the results of microsatellite loci analysis, Ekol. Genet., 2012, vol. 10, no. 2, pp. 40–49.

    Google Scholar 

  27. Ekart, A.K., Semerikova, S.A., Semerikov, Vl.., et al., The use of genetic markers of various types for evaluation of intraspecific differentiation level of the Siberian spruce, Sib. Lesn. Zh., 2014, no. 4, pp. 84–91.

    Google Scholar 

  28. Gugerli, F., Sperisen, C., Buchler, U., et al., Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial re-colonization of the western Alps, Mol. Ecol., 2001, vol. 10, no. 5, pp. 1255–1263.

    Article  CAS  PubMed  Google Scholar 

  29. Sperisen, C., Buchler, U., Gugerli, F., et al., Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce, Mol. Ecol., 2001, vol. 10, no. 1, pp. 257–263.

    Article  CAS  PubMed  Google Scholar 

  30. Tollefsrud, M.M., Kissling, R., Gugerli, F., et al., Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen, Mol. Ecol., 2008, vol. 17, no. 18, pp. 4134–4150.

    Article  CAS  PubMed  Google Scholar 

  31. Tollefsrud, M.M., Brochmann, C., and Sperisen, C., Paternal introgression from Siberian spruce (Picea obovata) to Norway spruce (P. abies): tracing pollen and seed flow with chloroplast and mitochondrial DNA, Phylogeography, Diversity and Hybridization in Norway Spruce, Tollefsrud, M.M., Ed., Oslo: Univ. Oslo, 2008.

    Google Scholar 

  32. Volkova, P., Shipunov, A., Borisova, P., et al., In search of hybridity: the case of Karelian spruces, Silva Fenn., 2014, vol. 48, no. 2, pp. 1–14.

    Article  Google Scholar 

  33. Potokina, E.K., Kiseleva, A.A., Nikolaeva, M.A., et al., Analysis of polymorphism of organelle DNA to elucidate the phylogeography of Norway spruce in the East European Plain, Vavilov. Zh. Genet. Sel., 2014, vol. 18, no. 4/1, pp. 818–830.

    Google Scholar 

  34. Avise, J.C., Plylogeography: the History and Formation of Species, Cambridge, MA: Harvard Univ. Press, 2000.

    Google Scholar 

  35. Doyle, J.J. and Doyle, J.L., Isolation of plant DNA from fresh tissue, Focus, 1990, vol. 12, pp. 13–15.

    Google Scholar 

  36. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp., 1999, no. 41, pp. 95–98.

    CAS  Google Scholar 

  37. Bandelt, H.J., Macaulay, V., and Richards, M., Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA, Mol. Phylogen. Evol., 2000, vol. 16, no. 1, pp. 8–28.

    Article  CAS  Google Scholar 

  38. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, no. 28, pp. 2537–2539.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Mudrik, E.A., Politov, D.V., Belokon’, Yu.S., et al., Genetic differentiation of spruce from Picea abies–P. obovata complex at microsatellite loci, Lesa Evrazii—Severnyi Kavkaz (Forests of Eurasia—The North Caucasus) (Proc. 8th Int. Conf. Young Sci., Sochi, 2008), Moscow: Mosk. Gos. Univ., 2008, pp. 157–159.

    Google Scholar 

  40. Mudrik, E.A., Politov, D.V., Belokon’, M.M., and Privalikhin, S.N., The genetic variation of spruce according to microsatellite loci data, Biosfera Zemli: proshloe, nastoyashchee i budushchee (Biosphere of the Earth: Past, Present and Future) (Proc. Conf. Young Sci. Yekaterinburg, 2008), Yekaterinburg: Goshchitskii, 2008, pp. 154–157.

    Google Scholar 

  41. Mudrik, E.A., Belokon’, M.M., Belokon’, Yu.S., and Politov, D.V., Application of microsatellite markers in gene geographic studies of conifers, Organizmy, populyatsii, ekosistemy: problemy i puti sokhraneniya bioraznoobraziya (Organisms, Populations, Ecosystems: Problems of Biodiversity Conservation) (Proc. AllRuss. Conf. Vodnye i nazemnye ekosistemy: problemy i perspektivy issledovanii (Aquatic and Terrestrial Ecosystems: Problems and Prospects of Research), Vologda, 2008), Vologda, 2008, pp. 24–28.

    Google Scholar 

  42. Velichko, A.A., Timireva, S.N., Kremenetski, K.V., et al., West Siberian Plain as a late glacial desert, Quat. Int., 2011, vol. 237, pp. 45–53.

    Article  Google Scholar 

  43. Arkhipov, S.A., Vdovin, V.V., Mizerov, B.V., and Nikolaev, V.A., Zapadno-Sibirskaya ravnina (West Siberian Plain), Moscow: Nauka, 1970.

    Google Scholar 

  44. Arkhipov, S.A., Astakhov, V.I., Volkov, I.A., and Panychev, V.A., Paleogeografiya Zapadno-Sibirskoi ravniny v maksimum pozdnezyryanskogo oledeneniya (Palaeogeography of the Western Siberian Lowlands during the Maximum Late Zyryansk Glaciation), Novosibirsk: Nauka, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mudrik.

Additional information

Original Russian Text © E.A. Mudrik, T.A. Polyakova, A.V. Shatokhina, G.N. Bondarenko, D.V. Politov, 2015, published in Genetika, 2015, Vol. 51, No. 10, pp. 1117–1125.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudrik, E.A., Polyakova, T.A., Shatokhina, A.V. et al. Spatial distribution of intron 2 of nad1 gene haplotypes in populations of Norway and Siberian spruce (Picea abiesP. obovata) species complex. Russ J Genet 51, 957–965 (2015). https://doi.org/10.1134/S1022795415100129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415100129

Keywords

Navigation