Skip to main content

Advertisement

Log in

Susceptibility loci for umbilical hernia in swine detected by genome-wide association

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Umbilical hernia (UH) is a complex disorder caused by both genetic and environmental factors. UH brings animal welfare problems and severe economic loss to the pig industry. Until now, the genetic basis of UH is poorly understood. The high-density 60K porcine SNP array enables the rapid application of genome-wide association study (GWAS) to identify genetic loci for phenotypic traits at genome wide scale in pigs. The objective of this research was to identify susceptibility loci for swine umbilical hernia using the GWAS approach. We genotyped 478 piglets from 142 families representing three Western commercial breeds with the Illumina PorcineSNP60 BeadChip. Then significant SNPs were detected by GWAS using ROADTRIPS (Robust Association-Detection Test for Related Individuals with Population Substructure)software base on a Bonferroni corrected threshold (P = 1.67E-06) or suggestive threshold (P = 3.34E-05) and false discovery rate (FDR = 0.05). After quality control, 29924 qualified SNPs and 472 piglets were used for GWAS. Two suggestive loci predisposing to pig UH were identified at 44.25MB on SSC2 (rs81358018, P = 3.34E-06, FDR = 0.049933) and at 45.90MB on SSC17 (rs81479278, P = 3.30E-06, FDR = 0.049933) in Duroc population, respectively. And no SNP was detected to be associated with pig UH at significant level in neither Landrace nor Large White population. Furthermore, we carried out a meta-analysis in the combined purebreed population containing all the 472 piglets. rs81479278 (P = 1.16E-06, FDR = 0.022475) was identified to associate with pig UH at genome-wide significant level. SRC was characterized as plausible candidate gene for susceptibility to pig UH according to its genomic position and biological functions. To our knowledge, this study gives the first description of GWAS identifying susceptibility loci for umbilical hernia in pigs. Our findings provide deeper insights to the genetic architecture of umbilical hernia in pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, Q.S., Li, J.F., Jiang, W.M., et al., The survey of the disease incidence of the swine genetic disorders, Heredity, 1988, vol. 10, no. 4, pp. 25–27.

    Google Scholar 

  2. Searcy, B.R., Gardner, I.A., and Hird, D.W., Effects of and factors associated with umbilical hernias in a swine herd, Am. Vet. Med. Assoc., 1994, vol. 4, no. 10, pp. 1660–1664.

    Google Scholar 

  3. Petersen, H.H., Nielsen, E.O., Hassing, A.G., et al., Prevalence of clinical signs of disease in Danish finisher pigs, Vet. Rec., 2008, vol. 162, no. 12, pp. 377–382.

    Article  CAS  PubMed  Google Scholar 

  4. Warren, T.R. and Atkeson, F.W., Inheritance of hernia in a family of Holstein-Friesian cattle, J. Hered., 1931, vol. 22, pp. 347–352.

    Google Scholar 

  5. Zhao, X., Du, Z.Q., Vukasinovic, N.V., et al., Candidate gene association for hernia and cryptorchidism in commercial lines of pigs, J. Anim. Sci., 2008, vol. 86, abstr.

  6. Stephanie, C. and John, D., Association between umbilical hernia and genetic line in a swine multiplication herd and methods to differentiate the role of sire in the incidence of umbilical hernias in offspring, J. Swine Health Prod., 2006, vol. 14, no. 6, pp. 317–322.

    Google Scholar 

  7. Ron, M., Tager-Cohen, I., Feldmesser, E., et al., Bovine umbilical hernia maps to the centromeric end of Bos taurus autosome 8, Anim. Genet., 2014, vol. 35, pp. 431–437.

    Article  Google Scholar 

  8. Ding, N.S., Mao, H.R., Guo, Y.M., et al., A genomewide scan reveals candidate susceptibility loci for pig hernias in an intercross between White Duroc and Erhualian, J. Anim. Sci., 2009, vol. 87, pp. 2469–2474.

    Article  CAS  PubMed  Google Scholar 

  9. Thapa, L.J., Pokharel, B.R., Paudel, R., et al., Association of seizure, facial dysmorphism, congenital umbilical hernia and undescended testes, Kathmandu Univ. Med. J., 2012, vol. 10, no. 37, pp. 91–93.

    CAS  Google Scholar 

  10. White, B.J., Schwartz, A.T., Levin, S.W., et al., Proximal 6q deletion phenotype-findings in de novo interstitial deletion 6g14.1g15, Genet. Med., 2000, vol. 2, p. 96.

    Article  Google Scholar 

  11. Radhakrishna, U., Nath, S.K., McElreavey, K., et al., Genome-wide linkage and copy number variation analysis reveals 710 kb duplication on chromosome 1p31.3 responsible for autosomal dominant omphalocele, J. Med. Genet., 2012, vol. 49, pp. 270–276.

    Article  CAS  PubMed  Google Scholar 

  12. Lebedev, I.N. and Sazhenova, E.A., Epimutations of imprinted genes in the human genome: classification, causes, association with hereditary pathology, Russ. J. Genet., 2008, vol. 44, no. 10, pp. 1176–1190.

    Article  CAS  Google Scholar 

  13. Lepshin, M.V., Sazhenova, E.A., and Lebedev, I.N., Multiple epimutations in imprinted genes in the human genome and congenital disorders, Russ. J. Genet., 2014, vol. 50, no. 3, pp. 221–236.

    Article  CAS  Google Scholar 

  14. Visscher, P.M., Brown, M.A., McCarthy, M.I., et al., Five years of GWAS discovery, Am. J. Hum. Genet., 2012, vol. 90, pp. 7–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ramos, A.M., Crooijimans, R.P., Affara, N.A., et al., Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology, PLoS One, 2009, vol. 4, no. 8. pp. e6524.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Grindflek, E., Lien, S., Hamland, H., et al., Large scale genome-wide association and LDLA mapping study identifies QTLs for boar taint and related sex steroids, BMC Genomics, 2011, vol. 12, p. 362.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ren, J., Mao, H.R., Zhang, Z.Y., et al., A 6-bp deletion in the TYRP1 gene causes the brown colouration phenotype in Chinese indigenous pigs, Heredity, 2011, vol. 106, pp. 862–868.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Long, Y., Ruan, G.R., Su, Y., et al., Genome-wide association study identifies QTLs for EBV of Backfat Thickness and average daily gain in Duroc pigs, Russ. J. Genet., 2014, vol. 50, no. 12, pp. 1308–1315.

    Article  CAS  Google Scholar 

  19. Thornton, T. and McPeek, M.S., Roadtrips: case-control association testing with partially or completely unknown population and pedigree structure, Am. J. Hum. Genet., 2010, vol. 86, pp. 172–184.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lander, E. and Kruglyak, L., Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results, Nat. Genet., 1995, vol. 11, pp. 241–247.

    Article  CAS  PubMed  Google Scholar 

  21. Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., 1995, vol. 57, no. 1, pp. 289–300.

    Google Scholar 

  22. Shaffer, J.P., Multiple hypothesis testing, Annu. Rev. Psychol., 1995, vol. 46, pp. 561–584.

    Article  Google Scholar 

  23. Price, A.L., Zaitlen, N.A., and Reich, D., New approaches to population stratification in genomewide association studies, Nat. Rev. Genet., 2010, vol. 11, pp. 459–463.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wu, C.Q., Dewan, A., and Hoh, J., A comparison of association methods correcting for population stratification in case-control studies, Ann. Hum. Genet., 2011, vol. 75, pp. 418–427.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Fu, W.X., Liu, Y., Lu, X., et al., A genome-wide association study identifies two novel promising candidate genes affecting Escherichia coli F4ab/F4ac susceptibility in swine, PLoS One, 2012, vol. 7, no. 3. pp. e32127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Brandon, L.P., Muhammad, G.K., Lin, T., et al., Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh, PLoS Genet., 2012, vol. 8, no. 2. pp. e1002522

    Article  Google Scholar 

  27. Tore, S., Casula, S., Casu, G., et al., Application of a new method for GWAS in a related case/control sample with known pedigree structure: identification of new loci for nephrolithiasis, PLoS Genet., 2011, vol. 7, no. 1 pp. e1001281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Darlow, J.M., Dobson, M.G., Darlay, R., et al., A new genome scan for primary nonsyndromic vesicoureteric reflux emphasizes high genetic heterogeneity and shows linkage and association with various genes already implicated in urinary tract development, Mol. Genet. Genomic Med., 2014, vol. 2, no. 1, pp. 7–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Orestis, A.P., Cristen, J.W., Joel, N.H., et al., The power of meta-analysis in genome-wide association studies, Annu. Rev. Genomic Hum. Genet., 2013, vol. 14, pp. 441–465.

  30. Liu, D.J., Peloso, G.M., Zhan, X.W., et al., Meta-analysis of gene-level tests for rare variant association, Nat. Genet., 2014, vol. 46, pp. 200–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Jean, C.L., Carla, A.I., Denise, H., et al., Meta-analysis of 74046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease, Nat. Genet., 2013, vol. 45, pp. 1452–1458.

    Article  Google Scholar 

  32. Sheila, M.T. and Joan, S.B., Cellular functions regulated by Src family kinases, Annu. Rev. Cell Dev. Biol., 1997, vol. 13, pp. 513–609.

    Article  Google Scholar 

  33. Frisch, S.M. and Francis, H., Disruption of epithelial cell-matrix interactions induces apoptosis, J. Cell Biol., 1994, vol. 124, pp. 619–626.

    Article  CAS  PubMed  Google Scholar 

  34. Hecker, G., Lewis, D.L., Rausch, D.M., et al., Nervegrowth-factortreated and v-src expressing PC 12 cells: a model for neuronal differentiation, Biochem. Soc. Trans., 1991, vol. 19, no. 2, pp. 385–386.

    Article  CAS  PubMed  Google Scholar 

  35. Scholz, G., Martinerie, C., Perbal, B., et al., Transcriptional down regulation of the nov proto-oncogene in fibroblasts transformed by p60v-src, Mol. Cell Biol., 1996, vol. 16, no. 2, pp. 481–486.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Khlebodarova, T.M., How cells protect themselves against stress?, Russ. J. Genet., 2002, vol. 38, no. 4, pp. 345–358.

    Article  CAS  Google Scholar 

  37. Mishra, R., Zhu, L., Eckert, R.L., et al., TGF-ß-regulated collagen type I accumulation: role of Src-based signals, Am. J. Physiol. Cell Physiol., 2007, vol. 292, pp. 1361–1369.

    Article  Google Scholar 

  38. Wiedemann, H., Chung, E., Fujii, T., et al., Comparative electron-microscope studies on type-III and type-I collagens, Eur. J. Biochem., 1975, vol. 51, pp. 363–368.

    Article  CAS  PubMed  Google Scholar 

  39. Bendavid, R., The unified theory of hernia formation, Hernia, 2004, vol. 8, pp. 171–176.

    PubMed  Google Scholar 

  40. Jansen, P.L., Mertens, P.P., Klinge, U., et al., The biology of hernia formation, Surgery, 2004, vol. 1, pp. 1–4.

    Article  Google Scholar 

  41. Brewer, S. and Williams, T., Finally, a sense of closure? Animal models of human ventral body wall defects, BioEssays, 2004, vol. 26, pp. 1307–1321.

    Article  PubMed  Google Scholar 

  42. Dunker, N. and Krieglstein, K., Tgfbeta2 (–/–) Tgfbeta3 (–/–) double knockout mice display severe midline fusion defects and early embryonic lethality, Anat. Embryol., 2002, vol. 206, pp. 73–83.

    Article  PubMed  Google Scholar 

  43. Hippokratis, K., Loulia, C., Athanasios, G.P., et al., Growth hormone-releasing hormone: not only a neurohormone, Trends Endocrinol. Metab., 2011, vol. 22, no. 8, pp. 311–317.

    Article  Google Scholar 

  44. Dioufa, N., Shally, A.V., Chatzistamou, L., et al., Acceleration of wound healing by growth hormonereleasing hormone and its agonists, Proc. Natl. Acad. Sci., 2010, vol. 107, no. 43, pp. 18611–18615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kanashiro-Takeuchi, R.M., Tziomalos, K., Takeuchi, L.M., et al., Cardioprotective effects of growth hormone-releasing hormone agonist after myocardial infarction, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 2604–2609.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ludwig, B., Ziegler, C.G., and Schally, A.V., Agonist of growth hormone-releasing hormone as a potential effector for survival and proliferation of pancreatic islets, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 12623–12628.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bellyei, S., Schally, A.V., Zarandi, M., et al., GHRH antagonists reduce the invasive and metastatic potential of human cancer cell lines in vitro, Cancer Lett., 2010, vol. 293, pp. 31–40.

    Article  CAS  PubMed  Google Scholar 

  48. Akis, I., Oztabak, K., Gonulalp, I., et al., IGF-1 and IGF-1R gene polymorphisms in East Anatolian Red and South Anatolian Red cattle breeds, Russ. J. Genet., 2010, vol. 46, no. 4, pp. 439–442.

    Article  CAS  Google Scholar 

  49. Dor, Y., Brown, J., Martinez, O.I., et al., Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation, Nature, 2004, vol. 429, pp. 41–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Ding.

Additional information

The article is published in the original.

Both authors contribute equally to this study and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X.J., Li, L., Zhang, Z.Y. et al. Susceptibility loci for umbilical hernia in swine detected by genome-wide association. Russ J Genet 51, 1000–1006 (2015). https://doi.org/10.1134/S1022795415100105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415100105

Keywords

Navigation