Skip to main content
Log in

ATPase 8/6 gene based genetic diversity assessment of snakehead murrel, Channa striata (Perciformes, Channidae)

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The mitochondrial DNA (mtDNA) ATPase 8/6 gene has been used in phylogenetic as well as in phylogeographic studies along with other mtDNA markers. In this study, ATPase gene sequences were used to assess the genetic structuring and phylogeographic patterns in Channa striata. Out of 884 nucleotide positions generated in ATPase 8/6 genes, 76 were polymorphic. The study suggested 23 unique haplotypes from 67 individuals of nine populations collected from different riverine systems of India. The ATPase 8/6 sequence revealed highest haplotype as well as nucleotide diversities in Imphal River population and lowest diversities in Tapti River population. The pattern of genetic diversity and haplotype network indicated distinct mitochondrial lineages for Chaliyar population, whereas mismatch distribution strongly suggested a population expansion in mid pleistocene epoch (0.4 Mya) with distinct genetic structuring in C. striata. The baseline information on genetic variation and the population sub-structuring would facilitate conservation and management of this important snakehead murrel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fish Base, Froese, R. and Pauly, D., 2008. http://www.fishbase.org

  2. Michelle, N.Y.T., Shanti, G., and Loqman, M.Y., Effect of orally administered Channa striatus extract against experimentally-induced osteoarthritis in rabbits, Int. J. Appl. Res. Vet. Med., 2004, vol. 2, pp. 171–175.

    Google Scholar 

  3. Hossain, M.K., Latifa, G.A., and Rahman, M.M., Observations on induced breeding of snakehead murrel, Channa striatus (Bloch, 1793), Int. J. Sustain. Crop Prod., 2008, vol. 3, pp. 65–68.

    Google Scholar 

  4. Nagarajan, M., Haniffa, M.A., Gopalakrishnan, A., et al., Genetic variability of Channa punctatus populations using randomly amplified polymorphic DNA, Aquat. Res., 2006, vol. 37, pp. 1151–1155.

    Article  CAS  Google Scholar 

  5. Ali, A.B., Aspects of the reproductive biology of female snakehead (Channa striata Bloch) obtained from irrigated rice agro ecosystem, Malaysia, Hydrobiologia, 1999, vol. 411, pp. 71–77.

    Article  Google Scholar 

  6. Haniffa, M.A., Merlin, T., and Mohamed, J.S., Induced spawning of the striped murrel Channa striatus using pituitary extracts, human chorionic gonadotropin, luteinizing hormone releasing hormone analogue and ovaprim, Acta Icht. Piscat., 2000, vol. 30, pp. 53–60.

    Google Scholar 

  7. Baie, S.H. and Sheikh, K.A., The wound healing properties of Channa striatus–cetrimide cream-tensile strength measurement, J. Ethnopharmacol., 2000, vol. 71, nos. 1–2, pp. 93–100.

    Article  CAS  PubMed  Google Scholar 

  8. Zakaria, Z.A., Jais, A.M., Goh, Y.M., et al., Amino acid and fatty acid composition of an aqueous extract of Channa striatus (haruan) that exhibits antinocicaptive activity, Clin. Exp. Pharmacol. Physiol., 2007, vol. 34, pp. 198–204.

    Article  CAS  PubMed  Google Scholar 

  9. Arul, V., Effects of delayed feeding on growth and survival of Channa striatus (Bloch) larvae, Aquac. Res., 2008, vol. 22, pp. 423–434.

    Article  Google Scholar 

  10. Amilhat, E. and Lorenzen, K., Habitat use, migration pattern and population dynamics of chevron snakehead Channa striata in a rainfed rice farming landscape, J. Fish Biol., 2005, vol. 67, suppl. B, pp. 23–34.

    Article  Google Scholar 

  11. Chandra, S. and Banerjee, T.K., Histopathological analysis of the respiratory organs of Channa striata subjected to air exposure, Vet. Arch., 2004, vol. 74, pp. 37–52.

    Google Scholar 

  12. Jamsari, A.F., Pau, T.M., and Siti-Azizah, M.N., Genetic structure of the snakehead murrel, Channa striata (Channidae) based on the cytochrome c oxidase subunit I gene: influence of historical and geomorphological factors, Genet. Mol. Biol., 2011, vol. 34, no. 1, pp. 152–160.

    Article  PubMed  Google Scholar 

  13. Jamsari, A.F.J., Pau, T.M., and Siti-Azizah, M.N., Isolation and multiplex genotyping of polymorphic microsatellite DNA markers in the snakehead murrel, Channa striata, Genet. Mol. Biol., 2011, vol. 34, no. 2, pp. 345–347.

    Article  CAS  PubMed  Google Scholar 

  14. Sanger, F., Nicklen, S., and Coulson, A.R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U.S.A., 1977, vol. 74, no. 12, pp. 5463–5467.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4673–4680.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Excoffier, L., Smouse, P.E., and Quattro, J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, 1992, vol. 86, pp. 991–1000.

    Google Scholar 

  18. Excoffier, L. and Lischer, H.E.L., Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 2010, vol. 10, pp. 564–567.

    Article  Google Scholar 

  19. Petit, R.J., El Mousadik, A., and Pons, O., Identifying populations for conservation on the basis of genetic markers, Conserv. Biol., 1998, vol. 12, pp. 844–855.

    Article  Google Scholar 

  20. Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  21. Mantel, N.A., The detection of disease clustering and a generalized regression approach, Cancer Res., 1967, vol. 27, pp. 209–220.

    CAS  PubMed  Google Scholar 

  22. Slatkin, M., Isolation by distance in equilibrium and non-equilibrium population, Evolution, 1993, vol. 47, pp. 264–279.

    Article  Google Scholar 

  23. Harpending, R.C., Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution, Hum. Biol., 1994, vol. 66, pp. 591–600.

    CAS  PubMed  Google Scholar 

  24. Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585–595.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Fu, X.Y., Statistical test of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, pp. 915–925.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Hudson, R.R., Gene genealogies and the coalescent process, Oxford Surveys in Evolutionary Biology, Futuyama, D. and Antonovics, J., Eds., New York: Oxford Univ. Press, 1990, pp. 1–44.

    Google Scholar 

  27. Rogers, A.R. and Harpending, H., Population growth makes waves in the distribution of pairwise differences, Mol. Biol. Evol., 1992, vol. 9, pp. 552–559.

    CAS  PubMed  Google Scholar 

  28. Slatkin, M. and Hudson, R., Pairwise comparison of mitochondrial DNA sequence in stable and exponentially growing populations, Genetics, 1991, vol. 129, pp. 555–562.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Excoffier, L., Analytical methods in phylogeography and genetic structure, Mol. Ecol., 2004, vol. 13, p. 727.

    Article  PubMed  Google Scholar 

  30. Schneider, S. and Excoffier, L., Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA, Genetics, 1999, vol. 152, pp. 1079–1089.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Bermingham, E., McCafferty, S.S., and Martin, A.B., Fish biogeography and molecular clocks: perspectives from the Panamian Isthmus, in Molecular Systematics of Fishes, Kocher, T.D. and Stepien, C.A., Eds., New York: Acad. Press, 1997, chapter 8, pp. 113–128.

    Chapter  Google Scholar 

  32. Sivasundar, A., Bermingham, E., and Ortí, G., Population structure and biogeography of migratory freshwater fishes (Prochilodus: Characiformes) in major South American rivers, Mol. Ecol., 2001, vol. 10, pp. 407–417.

    Article  CAS  PubMed  Google Scholar 

  33. Johns, G.C. and Avise, J.C., A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene, Mol. Biol. Evol., 1998, vol. 15, pp. 1481–1490.

    Article  CAS  PubMed  Google Scholar 

  34. Vrijenhoek, R.C., Conservation genetics of freshwater fish, J. Fish Biol., 1998, vol. 53, suppl. A, pp. 394–412.

    Article  Google Scholar 

  35. Bazin, E., Glémin, S., and Galtier, N., Population size does not influence mitochondrial genetic diversity in animals, Science, 2006, vol. 312, no. 5773, pp. 570–572.

    Article  CAS  PubMed  Google Scholar 

  36. Barluenga, M. and Mayer, A., Old fish in a young lake: stone loach (Pisces: Barbatula barbatula) populations in Lake Constance are genetically isolation by distance, Mol. Ecol., 2005, vol. 14, pp. 1229–1239.

    Article  CAS  PubMed  Google Scholar 

  37. Böhme, M., Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns, Geology, 2004, vol. 32, no. 5, pp. 393–396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Baisvar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baisvar, V.S., Kumar, R., Singh, M. et al. ATPase 8/6 gene based genetic diversity assessment of snakehead murrel, Channa striata (Perciformes, Channidae). Russ J Genet 51, 1007–1019 (2015). https://doi.org/10.1134/S102279541510004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541510004X

Keywords

Navigation