Skip to main content
Log in

Genetics of lens development

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The paper discusses the current data on the genetics of the lens development. Genetically based processes of the formation of the lens anlage, as well as its specification and differentiation, are considered. The main genes responsible for these consecutive processes of lens development are presented. Their mutational disorders can lead to the absence or underdevelopment of the lens or multiple types of cataracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mglinets, V.A., Molecular genetics of development of cornea, Russ. J. Genet., 2015, vol. 51, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  2. Mglinets, V.A., Formation of preplacodal area and placodes for some sensorial structures in animals, Med. Genet., 2009, vol. 8, no. 5, pp. 3–10.

    Google Scholar 

  3. Avbar, M.J. and Mayor, R., Early induction of neural crest cells: lessons learned from frog, fish and chick, Curr. Opin. Genet. Dev., 2002, vol. 12, pp. 452–458.

    Article  Google Scholar 

  4. Grocott, T., Johnson, S., Bailey, A.P., and Streit, A., Neural crest cells organize the eye via TGF-ß and canonical Wnt signalling, Nat. Commun., 2011, vol. 2, no. 265, pp. 1–6.

    Google Scholar 

  5. Feledy, J.A., Beanan, M.J., Sandoval, J.J., et al., Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1, Dev. Biol., 1999, vol. 212, no. 2, pp. 455–464.

    Article  CAS  PubMed  Google Scholar 

  6. Woda, J.M., Pastagia, J., Mercola, M., and Artinger, K.B., Dlx proteins position the neural plate border and determine adjacent cell fates, Develop., 2003, vol. 130, no. 2, pp. 331–342.

    Article  CAS  Google Scholar 

  7. Bhattacharyya, S., Bailey, A.P., Bronner-Fraser, M., and Streit, A., Segregation of lens and olfactory precursors from a common territory: cell sorting and reciprocity of Dlx5 and Pax6 expression, Dev. Biol., 2004, vol. 271, no. 2, pp. 403–414.

    Article  CAS  PubMed  Google Scholar 

  8. Quint, E., Zerucha, T., and Ekker, M., Differential expression of orthologous Dlx genes in zebrafish and mice: implications for the evolution of the Dlx homeobox gene family, J. Exp. Zool., 2000, vol. 288, no. 3, pp. 235–241.

    Article  CAS  PubMed  Google Scholar 

  9. Litsiou, A., Hanson, S., and Streit, A., A balance of FGF, Wnt, and BMP signalling positions the future placode territory in the head, Develop., 2005, vol. 132, pp. 4051–4062.

    Article  CAS  Google Scholar 

  10. Bessarab, D.A., Chong, S.W., and Korzh, V., Expression of zebrafish six1 during sensory organ development and myogenesis, Dev. Dyn., 2004, vol. 230, no. 4, pp. 781–786.

    Article  CAS  PubMed  Google Scholar 

  11. Sato, S., Ikeda, K., Shioi, G., et al., Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR, Dev. Biol., 2010, vol. 344, no. 1, pp. 158–171.

    Article  CAS  PubMed  Google Scholar 

  12. Ghanbari, H., Seo, H.C., Fjose, A., and Brandli, A.W., Molecular cloning and embryonic expression of Xenopus Six homeobox genes, Mech. Dev., 2001, vol. 101, nos. 1–2, pp. 271–277.

    Article  CAS  PubMed  Google Scholar 

  13. McLarren, K.W., Litsiou A., and Streit, A., DLX5 positions the neural crest and preplacode region at the border of the neural plate, Dev. Biol., 2003, vol. 259, no. 1, pp. 34–47.

    Article  CAS  PubMed  Google Scholar 

  14. David, R., Ahrens, K., Wedlich, D., and Schlosser, G., Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors, Mech. Dev., 2001, vol. 103, nos. 1–2, pp. 189–192.

    Article  CAS  PubMed  Google Scholar 

  15. Ishihara, T., Ikeda, K., Sato, S., et al., Differential expression of Eya1 and Eya2 during chick early embryonic development, Gene Expr. Patterns, 2008, vol. 8, no. 5, pp. 357–367.

    Article  CAS  PubMed  Google Scholar 

  16. Ishihara T., Sato S., Ikeda, K., et al., Multiple evolutionarily conserved enhancers control expression of Eya1, Dev. Dyn., 2008, vol. 237, pp. 3142–3156.

    Article  CAS  PubMed  Google Scholar 

  17. Ahrens, K. and Schlosser, G., Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis, Dev. Biol., 2005, vol. 288, pp. 40–59.

    Article  CAS  PubMed  Google Scholar 

  18. Morgan, R., Sohal, J., Paleja, M., and Pettengell, R., Pbx genes are required in Xenopus lens development, Int. J. Dev. Biol., 2004, vol. 48, no. 7, pp. 623–627.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, C.C., Dyer, M.A., Uchikawa, M., et al., Six3mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors, Develop., 2002, vol. 129, no. 12, pp. 2835–2849.

    CAS  Google Scholar 

  20. Purcell, P., Oliver, G., Mardon, G., et al., Pax6-dependence of Six3, Eya1, and Dach1 expression during lens and nasal placode induction, Gene Expr. Patterns, 2005, vol. 6, no. 1, pp. 110–118.

    Article  CAS  PubMed  Google Scholar 

  21. Goudreau, G., Petrou, P., Reneker, L.W., et al., Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 13, pp. 8719–8724.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Uchikawa, M., Yoshida, M., Iwafuchi-Doi, M., et al., B1 and B2 Sox gene expression during neural plate development in chicken and mouse embryos: universal versus species-dependent features, Dev. Growth Differ., 2011, vol. 53, pp. 761–771.

    Article  CAS  PubMed  Google Scholar 

  23. Cvekl, A., Yang, Y., Chauhan, B.K., and Cveklova, K., Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens, Int. J. Dev. Biol., 2004, vol. 48, nos. 8–9, pp. 829–844.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Martinez-Morales, J.R., Signore, M., Acampora, D., et al., Otx genes are required for tissue specification in the developing eye, Develop., 2001, vol. 128, pp. 2019–2030.

    CAS  Google Scholar 

  25. Zhou, X., Hollemann, T., Pieler, T., et al., Cloning and expression of Six3, the Xenopus homologue of murine Six3, Mech. Dev., 2000, vol. 91, pp. 327–330.

    Article  CAS  PubMed  Google Scholar 

  26. Murato, Y. and Hashimoto, C., Xhairy2 functions in Xenopus lens development by regulating p27(xic1) expression, Dev. Dyn., 2009, vol. 238, pp. 2179–2192.

    Article  CAS  PubMed  Google Scholar 

  27. Dutta, S., Dietrich, J.E., Aspock, G., et al., Pitx3 defines an equivalence domain for lens and anterior pituitary placode, Develop., 2005, vol. 132, pp. 1579–1590.

    Article  CAS  Google Scholar 

  28. Liu, W., Lagutin, O.V., Mende, M., et al., Six3 activation of Pax6 expression is essential for mammalian lens induction and specification, EMBO J., 2006, vol. 25, pp. 5383–5395.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Schlosser, G., Induction and specification of cranial placodes, Dev. Biol., 2006, vol. 294, pp. 303–305.

    Article  CAS  PubMed  Google Scholar 

  30. Kamachi, Y., Uchikawa, M., Tanouchi, A., et al., Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development, Genes Dev., 2001, vol. 15, no. 10, pp. 1272–1286.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Donner, A.L., Episkopou, V., and Maas, R.L., Sox2 and pou2fl interact to control lens and olfactory placode development, Dev. Biol., 2007, vol. 303, pp. 784–799.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zygar, C.A., Cook, T.L., and Grainger, R.M., Gene activation during early stages of lens induction in Xenopus, Develop., 1998, vol. 125, no. 17, pp. 3509–3519.

    CAS  Google Scholar 

  33. Christophorou, N.A., Bailey, A.P., Hanson, S., and Streit, A., Activation of Six1 target genes is required for sensory placode formation, Dev. Biol., 2009, vol. 336, no. 2, pp. 327–336.

    Article  CAS  PubMed  Google Scholar 

  34. Kamachi, Y., Uchikawa, M., Collignon, J., et al., Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction, Develop., 1998, vol. 125, no. 13, pp. 2521–2532.

    CAS  Google Scholar 

  35. Zhang, X., Friedman, A., and Heaney, S., et al., Meis homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis, Genes Dev., 2002, vol. 16, no. 16, pp. 2097–2107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Aota, S., Nakajima, N., Sakamoto, R., et al., Pax6 autoregulation mediated by direct interaction of Pax6 protein with the head surface ectoderm-specific enhancer of the mouse Pax6 gene, Dev. Biol., 2003, vol. 257, no. 1, pp. 1–13.

    Article  CAS  PubMed  Google Scholar 

  37. Reza, H.M., Ogino, H., and Yasuda, K., L-Maf, a downstream target of Pax6, is essential for chick lens development, Mech. Dev., 2002, vol. 116, nos. 1–2, pp. 61–73.

    Article  CAS  PubMed  Google Scholar 

  38. Shimada, N., Aya-Murata, T., Reza, H.M., and Yasuda, K., Cooperative action between L-Maf and Sox2 on d-crystallin gene expression during chick lens development, Mech. Dev., 2003, vol. 120, no. 4, pp. 455–465.

    Article  CAS  PubMed  Google Scholar 

  39. Muta, M., Kamachi, Y., Yoshimoto, A., et al., Distinct roles of SOX2, Pax6, and Maf transcription factors in the regulation of lens-specific d1-crystallin enhancer, Genes Cells, 2002, vol. 7, no. 8, pp. 791–805.

    Article  CAS  PubMed  Google Scholar 

  40. Ogino, H. and Yasuda, K., Sequential activation of transcription factors in lens induction, Dev. Growth Differ., 2000, vol. 42, pp. 437–448.

    Article  CAS  PubMed  Google Scholar 

  41. Plouhinec, J.L., Leconte, L., Sauka-Spengler, T., et al., Comparative analysis of gnathostome Otx gene expression patterns in the developing eye: implications for the functional evolution of the multigene family, Dev. Biol., 2005, vol. 278, no. 2, pp. 560–575.

    Article  CAS  PubMed  Google Scholar 

  42. Andreazzoli, M., Gestri, G., Cremisi, F., et al., Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate, Develop., 2003, vol. 130, no. 21, pp. 5143–5154.

    Article  CAS  Google Scholar 

  43. Ogino, H., Fisher, M., and Grainger, R.M., Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification, Develop., 2008, vol. 135, pp. 249–258.

    Article  CAS  Google Scholar 

  44. Medina-Martinez, O., Shah, R., and Jamrich, M., Pitx3 controls multiple aspects of lens development, Dev. Dyn., 2009, vol. 238, pp. 2193–2201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lee, H.Y., Wroblewsk, E., Philips, G.T., et al., Multiple requirements for Hes1 during early eye formation, Dev. Biol., 2005, vol. 284, no. 2, pp. 464–478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Smith, A.N., Miller, L.A., Radice, G., et al., Stagedependent modes of Pax6–Sox2 epistasis regulate lens development and eye morphogenesis, Develop., 2009, vol. 136, no. 17, pp. 2977–2985.

    Article  CAS  Google Scholar 

  47. Lang, R.A., Pathways regulating lens induction in the mouse, Int. J. Dev. Biol., 2004, vol. 48, nos. 8–9, pp. 783–791.

    Article  CAS  PubMed  Google Scholar 

  48. Kleinjan, D.A., Seawright, A., Mella, S., et al., Longrange downstream enhancers are essential for Pax6 expression, Dev. Biol., 2006, vol. 299, no. 2, pp. 563–581.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Rowan, S., Siggers, T., Lachke, S.A., et al., Precise temporal control of the eye regulatory gene Pax6 via enhancer-binding site affinity, Genes Dev., 2010, vol. 24, no. 10, pp. 980–985.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Faber, S.C., Dimanlig, P., Makarenkova, H.P., et al., Fgf receptor signaling plays a role in lens induction, Develop., 2001, vol. 128, no. 22, pp. 4425–4438.

    CAS  Google Scholar 

  51. Machon, O., Kreslova, J., Ruzickova, J., et al., Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/ß-catenin signaling in the lens surface ectoderm, Genesis, 2010, vol. 48, no. 2, pp. 86–95.

    CAS  PubMed  Google Scholar 

  52. Smith, A.N., Miller, L.A., Song, N., et al., The duality of ß-catenin function: a requirement in lens morphogenesis and signaling suppression of lens fate in periocular ectoderm, Dev. Biol., 2005, vol. 285, no. 2, pp. 477–489.

    Article  CAS  PubMed  Google Scholar 

  53. Klimova, L. and Kozmik, Z., Stage-dependent requirement of neuroretinal Pax6 for lens and retina development, Develop., 2014, vol. 141, pp. 1292–1302.

    Article  CAS  Google Scholar 

  54. Ishibashi, S. and Yasuda, K., Distinct roles of maf genes during Xenopus lens development, Mech. Dev., 2001, vol. 101, pp. 155–166.

    Article  CAS  PubMed  Google Scholar 

  55. Yamada, R., Mizutani-Koseki, Y., Hasegawa, T., et al., Cell-autonomous involvement of Mab21l1 is essential for lens placode development, Develop., 2003, vol. 130, no. 9, pp. 1759–1770.

    Article  CAS  Google Scholar 

  56. Manthey, A.L., Lachke, S.A., FitzGerald, P.G., et al., Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development, Mech. Dev., 2014, vol. 131, pp. 86–110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Chen, Y., Stump, R.J.W., Lovicu, F., and McAvoy, J.W., Expression of Frizzled and secreted frizzled-related proteins (Sfrps) during mammalian lens development, Int. J. Dev. Biol., 2004, vol. 48, nos. 8–9, pp. 867–877.

    Article  CAS  PubMed  Google Scholar 

  58. Kenyon, K.L., Moody, S.A., and Jamrich, M., A novel fork head gene mediates early steps during Xenopus lens formation, Develop., 1999, vol. 126, no. 22, pp. 5107–5116.

    CAS  Google Scholar 

  59. Rajagopal, R., Huang, J., Dattilo, L.K., et al., The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation, Dev. Biol., 2009, vol. 335, no. 2, pp. 305–316.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Shi, X., Luo, Y., Howley, S., et al., Zebrafish foxe3: roles in ocular lens morphogenesis through interaction with pitx3, Mech. Dev., 2006, vol. 123, no. 10, pp. 761–782.

    Article  CAS  PubMed  Google Scholar 

  61. Semina, E.V., Murray, J.C., Reiter, R., et al., Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice, Hum. Mol. Genet., 2000, vol. 9, no. 11, pp. 1575–1585.

    Article  CAS  PubMed  Google Scholar 

  62. Zilinski, C.A., Shah, R., Lane, M.E., and Jamrich, M., Modulation of zebrafish pitx3 expression in the primordia of the pituitary, lens, olfactory epithelium and cranial ganglia by hedgehog and nodal signaling, Genesis, 2005, vol. 41, no. 1, pp. 33–40.

    Article  CAS  PubMed  Google Scholar 

  63. Reza, H.M. and Yasuda, K., Lens differentiation and crystallin regulation: a chick model, Int. J. Dev. Biol., 2004, vol. 48, pp. 805–817.

    Article  CAS  PubMed  Google Scholar 

  64. Duncan, M.K., Cui, W., Oh, D.J., and Tomarev, S.I., Prox1 is differentially localized during lens development, Mech. Dev., 2002, vol. 112, nos. 1–2, pp. 195–198.

    Article  CAS  PubMed  Google Scholar 

  65. Ogino, H., Ochi, H., Reza, H.M., and Yasuda, K., Transcription factors involved in lens development from the preplacodal ectoderm, Dev. Biol., 2012, vol. 363, no. 2, pp. 333–347.

    Article  CAS  PubMed  Google Scholar 

  66. Cheng, C., Ansari, M.M., Cooper, J.A., and Gong, X., EphA2 and Src regulate equatorial cell morphogenesis during lens development, Develop., 2013, vol. 140, pp. 4237–4245.

    Article  CAS  Google Scholar 

  67. Kajihara, M., Kawauchi, S., Kobayashi, M., et al., Isolation, characterization, and expression analysis of zebrafish large Mafs, J. Biochem., 2001, vol. 129, no. 1, pp. 139–146.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, P., Wong, C., DePinho, R.A., et al., Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development, Genes Dev., 1998, vol. 12, pp. 3162–3167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Gomez, L.E., Liegeois, N.J., Zhang, P., et al., Cyclin Dand E-dependent kinases and the p57(KIP2) inhibitor: cooperative interactions in vivo, Mol. Cell Biol., 1999, vol. 19, pp. 353–363.

    Google Scholar 

  70. Maeda, A., Nakano, T., Moriguchi, T., et al., Transcription factor GATA-3 is essential for lens development, Dev. Dyn., 2009, vol. 238, pp. 2280–2291.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Reza, H.M. and Yasuda, K., Roles of Maf family proteins in lens development, Dev. Dyn., 2004, vol. 229, pp. 440–448.

    Article  CAS  PubMed  Google Scholar 

  72. Reza, H.M., Urano, A., Shimada, N., and Yasuda, K., Sequential and combinatorial roles of maf family genes define proper lens development, Mol. Vis., 2007, vol. 13, pp. 18–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Takeuchi, T., Kudo, T., Ogata, K., et al., Neither MafA/L-Maf nor MafB is essential for lens development in mice, Genes Cells, 2009, vol. 14, no. 8, pp. 941–947.

    Article  CAS  PubMed  Google Scholar 

  74. Zhao, H., Yang, T., Madakashira, B.P., et al., Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation, Dev. Biol., 2008, vol. 318, no. 2, pp. 276–288.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Wigle, J.T., Chowdhury, K., Gruss, P., and Oliver, G., Prox1 function is crucial for mouse lens-fibre elongation, Nat. Genet., 1999, vol. 21, no. 3, pp. 318–322.

    Article  CAS  PubMed  Google Scholar 

  76. Nguyen, M.M., Rivera, C., and Griep, A.E., Localization of PDZ domain containing proteins Discs Large-1 and Scribble in the mouse eye, Mol. Vis., 2005, vol. 11, pp. 1183–1199.

    CAS  PubMed  Google Scholar 

  77. Rivera, C., Griep, A.E., Yamben, I.F., et al., Cellautonomous requirements for Dlg-1 for lens epithelial cell structure and fiber cell morphogenesis, Dev. Dyn., 2009, vol. 238, pp. 2292–2308.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Leonard, M., Zhang, L., Zhai, N., et al., Modulation of N-cadherin junctions and their role as epicenters of differentiation-specific actin regulation in the developing lens, Dev. Biol., 2011, vol. 349, pp. 363–377.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Walker, J.L., Zhang, L., and Menko, A.S., Transition between proliferation and differentiation for lens epithelial cells is regulated by Src family kinases, Dev. Dyn., 2002, vol. 224, pp. 361–372.

    Article  CAS  PubMed  Google Scholar 

  80. Leonard, M., Zhang, L., Bleaken, B.M., and Menko, A.S., Distinct roles for N-cadherin linked c-Src and fyn kinases in lens development, Dev. Dyn., 2013, vol. 242, no. 5, pp. 469–484.

    Article  CAS  PubMed  Google Scholar 

  81. Hansen, L., Comyn, S., Mang, Y., et al., The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract, Eur. J. Hum. Genet., 2014, vol. 22, no. 11, pp. 1290–1297.

    Article  CAS  PubMed  Google Scholar 

  82. Maddala, R., Skiba, N.P., Lalane, R., et al., Periaxin is required for hexagonal geometry and membrane organization of mature lens fibers, Dev. Biol., 2011, vol. 357, no. 1, pp. 179–190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Maddala, R., Reneker, L.W., Pendurthi, B., and Rao, P.V., Rho GDP dissociation inhibitor-mediated disruption of Rho GTPase activity impairs lens fiber cell migration, elongation and survival, Dev. Biol., 2008, vol. 315, no. 2, pp. 217–231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Gong, X., Cheng, C., and Xia, C.H., Connexins in lens development and cataractogenesis, J. Membr. Biol., 2007, vol. 218, nos. 1–3, pp. 9–12.

    Article  CAS  PubMed  Google Scholar 

  85. Ryan, D.G., Oliveira-Fernandes, M., and Lavker, R.M., MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity, Mol. Vis., 2006, vol. 12, pp. 1175–1184.

    CAS  PubMed  Google Scholar 

  86. Karali, M., Peluso, I., Marigo, V., and Banfi, S., Identification and characterization of microRNAs expressed in the mouse eye, Invest. Ophthalmol. Vis. Sci., 2007, vol. 48, pp. 509–515.

    Article  PubMed  Google Scholar 

  87. Li, Y. and Piatigorsky, J., Targeted deletion of dicer disrupts lens morphogenesis, corneal epithelium stratification, and whole eye development, Dev. Dyn., 2009, vol. 238, pp. 2388–2400.

    Article  PubMed Central  PubMed  Google Scholar 

  88. He, L., He, X., Lim, L.P., et al., A microRNA component of the p53 tumor suppressor network, Nature, 2007, vol. 447, pp. 1130–1134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Rane, S., He, M., Sayed, D., et al., Downregulation of Mir-199a derepresses hypoxia-inducible factor1{alpha} and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes, Circ. Res., 2009, vol. 104, pp. 879–886.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Sun, H., Ma, Z., Li, Y., et al., Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans, J. Med. Genet., 2005, vol. 42, pp. 706–710.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Robinson, M.L., An essential role for FGF receptor signaling in lens development, Semin. Cell Dev. Biol., 2006, vol. 17, pp. 726–740.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Mglinets.

Additional information

Original Russian Text © V.A. Mglinets, 2015, published in Genetika, 2015, Vol. 51, No. 10, pp. 1097–1107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mglinets, V.A. Genetics of lens development. Russ J Genet 51, 939–948 (2015). https://doi.org/10.1134/S1022795415080050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415080050

Keywords

Navigation