Skip to main content
Log in

Genetic history of salmonid fishes of the genus Oncorhynchus

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This review discusses genetic approaches to solving important problems of evolutionary biology of salmonid fishes with special reference to Pacific salmon and trout. The problems of the genetic phylogeny of salmonid fishes, including issues of the consistency/inconsistency of phylogenetic tree topologies built using genetic and phenotypic characteristics, the timing of the main phylogenetic events, the relationships among different taxa, including the mutual status of Pacific salmon and trout, and others are discussed. The problems of the tetraploidization of the salmonid fishes, as well as the dilemma of their freshwater/marine origin, and the semelparity of some of the species are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glubokovskii, M.K., Evolyutsionnaya biologiya lososevykh ryb (Evolutionary Biology of Salmonid Fishes), Moscow: Nauka, 1995.

    Google Scholar 

  2. Vasil’ev, V.P., Evolyutsionnaya kariologiya ryb (Evolutionary Karyology of Fishes), Moscow: Nauka, 1985.

    Google Scholar 

  3. Viktorovskii, R.M. and Glubokovskii, M.K., Mechanisms and the speciation temps in charrs of the genus Salvelinus (Salmonidae, Pisces), Dokl. Akad. Nauk SSSR, 1977, vol. 235, pp. 946–949.

    Google Scholar 

  4. Viktorovskii, R.M., Mekhanizmy vidoobrazovaniya u gol’tsov Kronotskogo ozera (Speciation Mechanisms in Charrs of Kronotskoe Lake), Moscow: Nauka, 1978.

    Google Scholar 

  5. Glubokovskii, M.K. and Glubokovskaya, E.V., Evolutionary pathways of the Pacific salmon, genus Oncorhynchus Suckley, in Ryby v ekosistemakh lososevykh rek Dal’nego Vostoka (Fishes in Ecosystems of Salmon Rivers of the Far East), Vladivostok: Dal’nevostochnyi Nauchnyi Tsentr Akademii Nauk SSSR, 1981, pp. 5–66.

    Google Scholar 

  6. Viktorovskii, R.M., Makoedov, A.N., and Shevchishin, A.A., Chromosome sets of lenok and Siberian taimen and the salmon genera divergence, Tsitologiya, 1985, vol. 6, pp. 703–709.

    Google Scholar 

  7. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.

    Book  Google Scholar 

  8. Crespi, B.J. and Fulton, M.J., Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny, Mol. Phylogenet. Evol., 2004, vol. 31, pp. 658–679.

    Article  CAS  PubMed  Google Scholar 

  9. Robinson, J., Waller, M.J., Fail, S.C., et al., The IMGT/HLA database, Nucleic Acids Res., 2009, pp. D1013–D1017.

    Google Scholar 

  10. Bernatchez, L. and Landry, C., MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years?, J. Evol. Biol., 2003, vol. 16, pp. 363–377.

    Article  CAS  PubMed  Google Scholar 

  11. Spurgin, L.G. and Richardson, D.S., How pathogens drive genetic diversity: MHC, mechanisms and misunderstanding, Proc. R. Soc. London, Ser. B, 2010, vol. 277, pp. 979–988.

    Article  CAS  Google Scholar 

  12. Lamaze, F.C., Pavey, S.A., Normandeau, E., et al., Neutral and selective processes shape MHC gene diversity and expression in stocked brook charr populations (Salvelinus fontinalis), Mol. Ecol., 2014, vol. 23, pp. 1730–1748.

    Article  CAS  PubMed  Google Scholar 

  13. Zhivotovsky, L.A., On the methodology of studying population structure using genetic markers (with reference to pink salmon Oncorhynchus gorbuscha), J. Ichtyol., 2013, vol. 53, no. 5, pp. 359–364.

    Article  Google Scholar 

  14. Allendorf, F.W., Hohenlohe, P.A., and Luikart, G., Genomics and the future of conservation genetics, Nat. Rev. Genet., 2010, vol. 11, pp. 697–709.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Z. and Rannala, B., Molecular phylogenetics: principles and practice, Nat. Rev. Genet., 2012, vol. 13, pp. 303–314.

    Article  CAS  PubMed  Google Scholar 

  16. Hurley, I.A., Mueller, R.L., Dunn, K.A., et al., A new time-scale for ray-finned fish evolution, Proc. R. Soc. London, Ser. B, 2007, vol. 274, pp. 489–498.

    Article  CAS  Google Scholar 

  17. Guo, B., Zou, M., and Wagner, A., Pervasive indels and their evolutionary dynamics after the fish-specific genome duplication, Mol. Biol. Evol., 2012, vol. 29, pp. 3005–3022.

    Article  CAS  PubMed  Google Scholar 

  18. Osinov, A.G. and Lebedev, V.S., Salmonid fishes (Salmonidae, Salmoniformes): the systematic position in the superorder Protacanthopterygii, the main stages of evolution, and molecular dating, J. Ichthyol., 2004, vol. 44, no. 9, pp. 690–715.

    Google Scholar 

  19. Santini, F., Harmon, L.J., Carnevale, G., and Alfaro, M.E., Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes, BMC Evol. Biol., 2009, vol. 9, p. 194. doi 10.1186/1471-2148-9-194

    Article  PubMed Central  PubMed  Google Scholar 

  20. Broughton, R.E., Phylogeny of teleosts based on mitochondrial genome sequences, in Origin and Phylogenetic Interrelationships of Teleosts, Pfeil, F., Ed., München, 2010, pp. 61–76.

    Google Scholar 

  21. Broughton, R.E., Betancur R.R., Li, Ch., et al., Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution, PLoS Curr. Tree Life, 2013, pp. 1–33. doi 10.1371/currents.tol.2ca8041495 ffafd0c92756e75247483e

    Google Scholar 

  22. Alexandrou, M.A., Swartz, B.A., Matzke, N.J., and Oakley, T.H., Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae, Mol. Phylogenet. Evol., 2013, vol. 69, pp. 514–523.

    Article  CAS  PubMed  Google Scholar 

  23. Shedko, S.V., Miroshnichenko, I.L., and Nemkova, G.A., Phylogeny of salmonids (Salmoniformes: Salmonidae) and its molecular dating: analysis of nuclear RAG1 gene, Russ. J. Genet., 2012, vol. 48, no. 5, pp. 676–680.

    Article  CAS  Google Scholar 

  24. Berthelot, C., Brunet, F., Chalopin, D., et al., The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates, Nat. Commun., 2014. doi 10.1038/ncomms4657

    Google Scholar 

  25. Campbell, M.A., Andrés López, J., Sado, T., and Miya, M., Pike and salmon as sister taxa: detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences, Gene, 2013, vol. 530, pp. 57–65. http://dx.doi.org/10.1016/j.gene.2013.07.068.

    Article  CAS  PubMed  Google Scholar 

  26. Crête-Lafrenière, A., Weir, L.K., and Bernatchez, L., Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling, PLOS One, 2012, vol. 7. e46662. doi 10.1371/journal.pone0046662

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wilson, M.V.H., Middle Eocene freshwater fishes from British Columbia: life sciences contributions, R. Ontario Mus., 1977, vol. 113, pp. 1–61.

    Google Scholar 

  28. Stearley, R.F., Historical ecology of Salmoninae, with special reference to Oncorhynchus, in Systematics, Historical Ecology, and North American Freshwater Fishes, Mayden, R.L., Ed., Stanford: Stanford Univ., 1992, pp. 622–658.

    Google Scholar 

  29. Montgomery, D.R., Coevolution of the Pacific salmon and Pacific Rim topography, Geology, 2000, vol. 28, pp. 1107–1110.

    Article  Google Scholar 

  30. Smith, G.R., Montgomery, D.R., Peterson, N.P., and Crowley, B., Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish valley, Washington, DC, Q. Res. (Orlando), 2007, vol. 68, pp. 227–238.

    Google Scholar 

  31. Shaikhaev, E.G. and Zhivotovsky, L.A., The evolution of microsatellite loci in salmonid fishes, Russ. J. Genet., 2014, vol. 50, no. 8, pp. 853–859.

    Article  CAS  Google Scholar 

  32. Waples, R.S., Pess, G.R., and Beechie, T., Evolutionary history of Pacific salmon in dynamic environments, Evol. Appl., 2008, vol. 1, pp. 189–206.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Murata, S., Takasaki, N., Saitoh, M., and Okada, N., Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 6995–6999.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Murata, S., Takasaki, N., Saitoh, M., et al., Details of retropositional genome dynamics that provide a rationale for a generic division: the distinct branching of all the Pacific salmon and trout (Oncorhynchus) from the Atlantic salmon and trout (Salmo), Genetics, 1996, vol. 142, pp. 915–926.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Hamada, M., Kido, Y., Himberg, M., et al., A newly isolated family of short interspersed repetitive elements (SINEs) in coregonid fishes (whitefish) with sequences that are almost identical to those of the SmaI family of repeats: possible evidence for the horizontal transfer of SINEs, Genetics, 1997, vol. 146, pp. 355–367.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Matveev, V., Nishihara, H., and Okada, N., Novel SINE families from salmons validate Parahucho (Salmonidae) as a distinct genus and give evidence that SINEs can incorporate line-related 3’-tails of other SINEs, Mol. Boil. Evol., 2007, vol. 24, pp. 1656–1666.

    Article  CAS  Google Scholar 

  37. Matveev, V. and Okada, N., Retroposons of salmonoid fish (Actonopterygii: Salmonoidei) and their evolution, Gene, 2009, vol. 434, pp. 16–28.

    Article  CAS  PubMed  Google Scholar 

  38. Wilson, M.V.H. and Williams, R.G., Salmoniform fishes: key fossils, supertree, and possible morphological synapomorphies, in Origin and Phylogenetic Interrelationships of Teleosts, Nelson, J.S., Schultze, H.-P., and Wilson, M.V.H., Eds., München: Friedrich Pfeil, 2010, pp. 379–409.

    Google Scholar 

  39. Oleinik, A.G., On the mutation rates of the mitochondrial and nuclear genomes of Salmonid fishes, Russ. J. Mar. Biol., 2000, vol. 26, no. 6, pp. 432–438.

    Article  Google Scholar 

  40. McKay, Sh.J., Nakayama, I., Smith, M.J., and Delvin, R.H., Genetic relationship between masu and amago salmon examined through sequence analysis of nuclear and mitochondrial DNA, Zool. Sci., 1998, vol. 15, pp. 971–979.

    Article  CAS  Google Scholar 

  41. Esteve, M. and McLennan, D.A., The phylogeny of Oncorhynchus (Euteleostei, Salmonidae) based on behavioral and life history characters, Copeia, 2007, vol. 3, pp. 520–533. http://dx.doi.org/10.1643/0045-8511.

    Article  Google Scholar 

  42. Oakley, T.H. and Phillips, R.B., Phylogeny of salmonine fishes based on growth hormone introns: Atlantic (Salmo) and Pacific (Oncorhynchus) salmon are not sister taxa, Mol. Phylogenet. Evol., 1999, vol. 11, pp. 381–393.

    Article  CAS  PubMed  Google Scholar 

  43. Crespi, B.J. and Teo, R., Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes, Evolution, 2002, vol. 56, pp. 1008–1020.

    Article  PubMed  Google Scholar 

  44. Koop, B.F., Von Schalburg, K.R., Leong, J., et al., A salmonid EST genomic study: genes, duplications, phylogeny and microarrays, Genomics, 2008, vol. 9, p. 545.

    PubMed Central  PubMed  Google Scholar 

  45. Bogutskaya, N.G. and Naseka, A.M., Katalog beschelyustnykh i ryb presnykh i solonovatykh vod Rossii s nomenklaturnymi i taksonomicheskimi kommentariyami (Catalogue of Agnathans and Fishes of Fresh and Brackish Waters of Russia with Comments on Nomenclature and Taxonomy), Moscow: KMK, 2004.

    Google Scholar 

  46. Smith, G.R. and Stearley, R.F., The classification and scientific names of rainbow and cutthroat trouts, Fisheries, 1989, vol. 14, pp. 4–10.

    Article  Google Scholar 

  47. Osinov, A.G., Genetic divergence and phylogenetic relationships among lenoks of the genus Brachymystax and taimens of the genera Hucho and Parahucho, Genetika (Moscow), 1991, vol. 27, no. 12, pp. 2127–2136.

    Google Scholar 

  48. Phillips, R.B., Oakley, T.H., and Davis, E.L., Evidence supporting the paraphyly of Hucho (Salmonidae) based on ribosomal DNA restriction maps, J. Fish. Biol., 1995, vol. 47, pp. 956–961.

    Article  CAS  Google Scholar 

  49. Shed’ko, S.V., Ginatulina, L.K., Parpura, I.Z., and Ermolenko, A.V., Evolutionary and taxonomic relationships among Far-Eastern salmonid fishes inferred from mitochondrial DNA divergence, J. Fish. Biol., 1996, vol. 49, pp. 815–829.

    Article  Google Scholar 

  50. McDowall, R.M., The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis, Rev. Fish Biol. Fish., 1997, vol. 7, pp. 443–462.

    Article  Google Scholar 

  51. Oohara, I. and Okazaki, T., Genetic relationship among three subspecies of Oncorhynchus masou determined by mitochondrial DNA sequence analysis, Zool. Sci., 1996, vol. 13, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  52. Nakajima, T., Shimura, H., Yamazaki, M., et al., Lack of hormonal stimulation prevents the landlocked Biwa salmon (Oncorhynchus masou subspecies) from adapting to seawater, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2014, vol. 307, pp. R414–R425. doi 10.1152/ajpregu.00474.2013

    CAS  Google Scholar 

  53. Kato, F., Life histories of masu and amago salmon (Oncorhynchus masou and Oncorhynchus rhodurus), in Pacific Salmon Life Histories, Groot, C. and Margolis, L., Eds., Vancouver: Univ. British Columbia Press, 1991, pp. 449–520.

    Google Scholar 

  54. Pavlov, D.A., Lososevye (Biologiya razvitiya i vosproizvodstvo) (Salmonid Fishes: Biology of Development and Reproduction), Moscow: Mosk. Gos. Univ., 1989.

    Google Scholar 

  55. Zhivotovsky, L.A., Integratsiya poligennykh sistem v populyatsiyakh (Integration of Polygene Systems in Populations), Moscow: Nauka, 1984.

    Google Scholar 

  56. Pavlov, D.A. and Osinov, A.G., Main features of early ontogeny in salmonids (Salmoniformes) and other representatives of the Protacanthopterygii in relation to the phylogeny, J. Ichtyol., 2004, vol. 44, pp. 293–312.

    Google Scholar 

  57. Ohno, S., Evolution by Gene Duplication, New York: Springer-Verlag, 1970.

    Book  Google Scholar 

  58. Holland, P.W., Garcia-Fernandez, J., Williams, N.A., et al., Gene duplications and the origins of vertebrate development, Development, 1994, suppl., pp. 125–133.

    Google Scholar 

  59. Kasahara, M., The 2R hypothesis: an update, Curr. Opin. Immunol., 2007, vol. 19, pp. 547–552.

    Article  CAS  PubMed  Google Scholar 

  60. Allendorf, F.W. and Thorgaard, G.H., Tetraploidy and evolution of salmonid fishes, Evolutionary Genetics of Fish, Turner, B.J., Ed., New York: Plenum, 1984, pp. 1–53.

    Chapter  Google Scholar 

  61. Vasil’ev, V.P., On polyploidy in fish and some questions of the evolution of salmonid (Salmonidae) karyotypes, Zh. Obshch. Biol., 1977, vol. 38, pp. 380–392.

    Google Scholar 

  62. Allendorf, F.W. and Danzmann, R.G., Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout, Genetics, 1997, vol. 145, no. 4, pp. 1083–1092.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Altukhov, Yu.P., Salmenkova, E.A., and Omelchenko, V.T., Populyatsionnaya genetika lososevykh ryb (Population Genetics of Salmonid Fish), Moscow: Nauka, 1997.

    Google Scholar 

  64. Gregory, T.R., Animal genome size database, http://www.genomesize.com. Cited 2005.

  65. Danzmann, R.G., Davidson, E.A., Ferguson, M.M., et al., Distribution of ancestral proto-Actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (rainbow trout and Atlantic salmon), BMC Genomics, 2008, vol. 9, p. 557.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003, 3rd ed.

    Google Scholar 

  67. Afanas’ev, K.I., Rubtsova, G.A., Shitova, M.V., et al., Population structure of chum salmon Oncorhynchus keta in the Russian Far East, as revealed by microsatellite markers, Russ. J. Mar. Biol., 2011, vol. 37, pp. 39–47.

    Google Scholar 

  68. FishBase, Version 06/2014. http://www.fish-base.org/search.php. Cited 2014.

  69. Sémon, M. and Wolfe, K.H., Consequences of genome duplication, Curr. Opin. Genet. Dev., 2007, vol. 17, pp. 505–512.

    Article  PubMed  Google Scholar 

  70. Lu, J., Peatman, E., Tang, H., et al., Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications, Genomics, 2012, vol. 13, p. 246. doi 10.1186/1471-2164-13-246

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Pavlov, D.S. and Savvaitova, K.A., Tikhookeanskie blagorodnye lososi i foreli Azii (Pacific Salmon and Trout Noble Asia), Moscow: Nauchnyi Mir, 2001.

    Google Scholar 

  72. Gross, M.R., Evolution of diadromy in fishes, Am. Fish. Soc. Symp., 1987, vol. 1, pp. 14–25.

    Google Scholar 

  73. Gross, M.R., Coleman, R.M., and McDowall, R.M., Aquatic productivity and the evolution of diadromous fish migration, Science, 1988, vol. 239, pp. 1291–1293.

    Article  CAS  PubMed  Google Scholar 

  74. Craik, J.C.A., Egg quality and egg pigment content in salmonid fishes, Aquaculture, 1985, vol. 47, pp. 61–88. doi 10.1016/0044-8486(85)90008-0

    Article  Google Scholar 

  75. Dodson, J.J., Laroche, J., and Lecomte, F., Cotrasting evolutionary pathways of anadromy in euteleostean fishes, Am. Fish. Soc. Symp., 2009, vol. 89, pp. 63–77.

    Google Scholar 

  76. Betancur R.R., Broughton, R.E., Wiley, E.O., et al., The tree of life and a new classification of bony fishes, PLoS Curr., 2013. doi 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288

    Google Scholar 

  77. Bonnet, X., The evolution of semelparity, in Reproductive Biology and Phylogeny of Snakes, Aldridge, R.D. and Sever, D.M., Eds., Enfield, NH: Science, 2011, pp. 645–672.

    Chapter  Google Scholar 

  78. Hendrix, R., Hauswaldt, J.S., Veith, M., and Steinfartz, S., Strong correlation between cross-amplification success and genetic distance across all members of true salamanders (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci, Mol. Ecol. Res., 2010, vol. 10, pp. 1038–1047.

    Article  CAS  Google Scholar 

  79. Pacific Salmon Life Histories, Groot, C. and Margolis, L., Eds., Vancouver: Univ. British Columbia Press, 1991.

    Google Scholar 

  80. Augerot, X. and Foley, D.N., Atlas of Pacific Salmon: State of the Salmon, Berkeley: University of California Press, 2005.

    Google Scholar 

  81. Dvinin, P.A., Lososi Sakhalina i Kuril (Salmons of Sakhalin and the Kuril Islands), Moscow: Rybnoe Khozyaistvo, 1959.

    Google Scholar 

  82. Chereshnev, I.A., Volobuev, V.V., Shestakov, A.V., and Frolov, S.V., Lososevidnye ryby Severo-Vostoka Rossii (Salmonoid Fishes in Russian North-East), Vladivostok: Dal’nauka, 2002.

    Google Scholar 

  83. Shuntov, V.P. and Temnykh, O.S., Tikhookeanskie lososi v morskikh i okeanicheskikh ekosistemakh (Pacific Salmon in Marine and Oceanic Ecosystem), Vladivostok: Tikhookeanskiy Nauchno-Issledovatel’skiy Institut Rybnogo Khozyaystva i Okeanografii, 2008, part 1.

    Google Scholar 

  84. Shuntov, V.P. and Temnykh, O.S., Tikhookeanskie lososi v morskikh i okeanicheskikh ekosistemakh (Pacific Salmon in Marine and Oceanic Ecosystem), Vladivostok: Tikhookeanskiy Nauchno-Issledovatel’skiy Institut Rybnogo Khozyaystva i Okeanografii, 2011, part 2.

    Google Scholar 

  85. Smirnov, A.I., Biologiya, razmnozhenie i razvitie tikhookeanskikh lososei (The Biology, Reproduction and Development of the Pacific Salmon), Moscow: Mosk. Gos. Univ., 1975.

    Google Scholar 

  86. Konovalov, S.M., Populyatsionnaya biologiya tikhookeanskikh lososei (Population Biology of the Pacific Salmons), Leningrad: Nauka, 1980.

    Google Scholar 

  87. Lososevye rybokhozyaistvennye zapovednye zony na Dal’nem Vostoke Rossii (Salmon Fishery Conservation Areas in the Russian Far East), Pavlov, D.S. and Glubokovskii, M.K., Eds., Moscow: Vserossiyskiy Nauchno-Issledovatel’skiy Institut Rybnogo Khozyaystva i Okeanografii-Institut Problem Ekologii i Evolyutsii, 2011.

    Google Scholar 

  88. Zinichev, V.V., Leman, V.N., Zhivotovsky, L.A., and Stavenko, G.A., Teoriya i praktika sokhraneniya bioraznoobraziya pri razvedenii tikhookeanskikh lososei (The Theory and Practice of Biodiversity Conservation in Breeding of Pacific Salmon), Moscow: Vserossiyskiy Nauchno-Issledovatel’skiy Institut Rybnogo Khozyaystva i Okeanografii, 2012.

    Google Scholar 

  89. Murata, S., Takasaki, N., Okazaki, T., et al., Molecular evidence from short interspersed elements (SINEs) that Oncorhynchus masou (cherry salmon) in monophyletic, Canad. J. Fish. Aquat. Sci., 1998, vol. 55, pp. 1864–1870.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Zhivotovsky.

Additional information

Original Russian Text © L.A. Zhivotovsky, 2015, published in Genetika, 2015, Vol. 51, No. 5, pp. 584–599.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhivotovsky, L.A. Genetic history of salmonid fishes of the genus Oncorhynchus . Russ J Genet 51, 491–505 (2015). https://doi.org/10.1134/S1022795415050105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415050105

Keywords

Navigation