Skip to main content
Log in

Insertional mutation in the AZOBR_p60120 gene is accompanied by defects in the synthesis of lipopolysaccharide and calcofluor-binding polysaccharides in the bacterium Azospirillum brasilense Sp245

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In the bacterium Azospirillum brasilense Sp245, extracellular calcofluor-binding polysaccharides (Cal+ phenotype) and two types of lipopolysaccharides, LPSI and LPSII, were previously identified. These lipopolysaccharides share the same repeating O-polysaccharide unit but have different antigenic structures and different charges of their O-polysaccharides and/or core oligosaccharides. Several dozens of predicted genes involved in the biosynthesis of polysaccharides have been localized in the AZOBR_p6 plasmid of strain Sp245 (GenBank accession no. HE577333). In the present work, it was demonstrated that an artificial transposon Omegon-Km had inserted into the central region of the AZOBR_p60120 gene in the A. brasilense Sp245 LPSI Cal KM252 mutant. In A. brasilense strain Sp245, this plasmid gene encodes a putative glycosyltransferase containing conserved domains characteristic of the enzymes participating in the synthesis of O-polysaccharides and capsular polysaccharides (accession no. YP004987664). In mutant KM252, a respective predicted protein is expected to be completely inactivated. As a result of the analysis of the EcoRI fragment of the AZOBR_p6 plasmid, encompassing the AZOBR_p60120 gene and a number of other loci, novel data on the structure of AZOBR_p6 were obtained: an approximately 5-kb gap (GenBank accession no. KM189439) was closed in the nucleotide sequence of this plasmid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katsy, E.I., Molekulyarnaya genetika assotsiativnogo vzaimodeistviya bakterii i rastenii: sostoyanie i perspektivy issledovanii, (Molecular Genetics of Associative Interaction between Bacteria and Plants: Current Status and Prospects of the Studies), Ignatov, V.V., Ed., Moscow: Nauka, 2007.

  2. Baldani, V.L.D., Baldani, J.I., and Döbereiner, J., Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat, Can. J. Microbiol., 1983, vol. 29, no. 8, pp. 924–929.

    Article  Google Scholar 

  3. Katsy, E.I., Plasmid rearrangements and changes in cell-surface architecture and social behavior of Azospirillum brasilense, in Plasticity in Plant-Growth-Promoting and Phytopathogenic Bacteria, Katsy, E.I., Ed., New York: Springer, 2014, pp. 81–97.

    Chapter  Google Scholar 

  4. Katzy, E.I., Matora, L.Yu., Serebrennikova, O.B., and Scheludko, A.V., Involvement of a 120-MDa plasmid of Azospirillum brasilense Sp245 in production of lipopolysaccharides, Plasmid, 1998, vol. 40, no. 1, pp. 73–83.

    Article  CAS  PubMed  Google Scholar 

  5. Fedonenko, Yu.P., Zdorovenko, E.L., Konnova, S.A., et al., A comparison of the lipopolysaccharides and O-specific polysaccharides of Azospirillum brasilense Sp245 and its Omegon-Km mutants KM018 and KM252, Microbiology (Moscow), 2004, vol. 73, no. 2, pp. 143–149.

    Article  CAS  Google Scholar 

  6. Fedonenko, Y.P., Zatonsky, G.V., Konnova, S.A., et al., Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245, Carbohydr. Res., 2002, vol. 337, no. 9, pp. 869–872.

    Article  CAS  PubMed  Google Scholar 

  7. Del Gallo, M., Negi, M., and Neyra, C.A., Calcofluor and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum, J. Bacteriol., 1989, vol. 171, no. 6, pp. 3504–3510.

    PubMed Central  PubMed  Google Scholar 

  8. Konnova, S.A., Skvortsov, I.M., Makarov, O.E., and Ignatov, V.V., Properties of polysaccharide complexes produced by Azospirillum brasilense and polysaccharides isolated from these complexes, Microbiologiya, 1994, vol. 63, no. 6, pp. 1020–1030.

    CAS  Google Scholar 

  9. Wisniewski-Dyé, F., Borziak, K., Khalsa-Moyers, G., et al., Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments, PLoS Genet., 2011, vol. 7, no. 12. e1002430.

    Google Scholar 

  10. Katsy, E.I., Borisov, I.V., Petrova, L.P., and Matora, L.Yu., The use of fragments of the 85- and 120-MDa plasmids of Azospirillum brasilense Sp245 to study the plasmid rearrangement in this bacterium and to search for homologous sequences in plasmids of Azospirillum brasilense Sp7, Russ. J. Genet., 2002, vol. 38, no. 2, pp. 124–131.

    Article  CAS  Google Scholar 

  11. Katsy, E.I., Petrova, L.P., Kulibyakina, O.V., and Prilipov, A.G., Analysis of Azospirillum brasilense plasmid loci coding for (lipo)polysaccharides synthesis enzymes, Microbiology (Moscow), 2010, vol. 79, no. 2, pp. 216–222.

    Article  CAS  Google Scholar 

  12. Fellay, R., Krisch, H.M., Prentki, P., and Frey, J., Omegon-Km: a transposable element designed for in vivo insertional mutagenesis and cloning of genes in gram-negative bacteria, Gene, 1989, vol. 76, no. 2, pp. 215–226.

    Article  CAS  PubMed  Google Scholar 

  13. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  14. Döbereiner, J. and Day, J.M., Associative symbiosis in tropical grass: characterization of microorganisms and dinitrogen fixing sites, in Symposium on Nitrogen Fixation, Newton, W.E. and Nijmans, C.J., Eds., Pullman: Washington State Univ., 1976, pp. 518–538.

    Google Scholar 

  15. Katsy, E.I. and Prilipov, A.G., Mobile elements of an Azospirillum brasilense Sp245 85-MDa plasmid involved in replicon fusions, Plasmid, 2009, vol. 62, no. 1, pp. 22–29.

    Article  CAS  PubMed  Google Scholar 

  16. Wheeler, D.L., Church, D.M., Federhen, S., et al., Database resources of the National Center for Biotechnology, Nucleic Acids Res., 2003, vol. 31, no. 1, pp. 28–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Boratyn, G.M., Camacho, C., Cooper, P.S., et al., BLAST: a more efficient report with usability improvements, Nucleic Acids Res., 2013, vol. 41, pp. W29–W33.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Letunic, I., Doerks, T., and Bork, P., SMART 7: recent updates to the protein domain annotation resource, Nucleic Acids Res., 2012, vol. 40, pp. D302–D305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yu, N.Y., Wagner, J.R., Laird, M.R., et al., PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes, Bioinformatics, 2010, vol. 26, no. 13, pp. 1608–1615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Juncker, A.S., Willenbrock, H., Von Heijne, G., et al., Prediction of lipoprotein signal peptides in Gram-negative bacteria, Protein Sci., 2003, vol. 12, no. 8, pp. 1652–1662.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dyrløv Bendtsen, J., Kiemer, L., Fausböll, A., and Brunak, S., Non-classical protein secretion in bacteria, BMC Microbiol., 2005, vol. 5, p. 58.

    Article  Google Scholar 

  22. Dyrløv Bendtsen, J., Nielsen, H., Widdick, D., et al., Prediction of twin-arginine signal peptides, BMC Bioinform., 2005, vol. 6, p. 167.

    Article  Google Scholar 

  23. Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Methods, 2011, vol. 8, no. 10, pp. 785–786.

    Article  CAS  PubMed  Google Scholar 

  24. Fedonenko, Yu.P., Katsy, E.I., Petrova, L.P., et al., The structure of the O-specific polysaccharide from a mutant of nitrogen-fixing rhizobacterium Azospirillum brasilense Sp245 with an altered plasmid content, Russ. J. Bioorg. Chem., 2010, vol. 36, no. 2, pp. 219–223.

    Article  CAS  Google Scholar 

  25. Katsy, E.I., Plasmid plasticity in the plant-associated bacteria of the genus Azospirillum, in Bacteria in Agrobiology: Plant Growth Responses, Maheshwari, D.K., Ed., Berlin: Springer, 2011, pp. 139–157.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Katsy.

Additional information

Original Russian Text © E.I. Katsy, A.G. Prilipov, 2015, published in Genetika, 2015, Vol. 51, No. 3, pp. 306–311.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsy, E.I., Prilipov, A.G. Insertional mutation in the AZOBR_p60120 gene is accompanied by defects in the synthesis of lipopolysaccharide and calcofluor-binding polysaccharides in the bacterium Azospirillum brasilense Sp245. Russ J Genet 51, 245–250 (2015). https://doi.org/10.1134/S1022795415030059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415030059

Keywords

Navigation